首页> 外文会议>Cryptographic hardware and embedded systems-CHES 2009 >Faster F_p-Arithmetic for Cryptographic Pairings on Barreto-Naehrig Curves
【24h】

Faster F_p-Arithmetic for Cryptographic Pairings on Barreto-Naehrig Curves

机译:Barreto-Naehrig曲线上的密码配对更快的F_p算法

获取原文
获取原文并翻译 | 示例

摘要

This paper describes a new method to speed up F_p-arithmetic for Barreto-Naehrig (BN) curves. We explore the characteristics of the modulus defined by BN curves and choose curve parameters such that F_p multiplication becomes more efficient. The proposed algorithm uses Montgomery reduction in a polynomial ring combined with a coefficient reduction phase using a pseudo-Mersenne number. With this algorithm, the performance of pairings on BN curves can be significantly improved, resulting in a factor 5.4 speed-up compared with the state-of-the-art hardware implementations. Using this algorithm, we implemented a pairing processor in hardware, which runs at 204 MHz and finishes one ate and R-ate pairing computation over a 256-bit BN curve in 4.22 ms and 2.91 ms, respectively.
机译:本文介绍了一种加快Barreto-Naehrig(BN)曲线F_p算法的新方法。我们探索由BN曲线定义的模量的特征,并选择曲线参数,以使F_p乘法变得更有效。所提出的算法在多项式环中使用蒙哥马利约简,并使用伪梅森数与系数约简相结合。使用该算法,可以显着提高BN曲线上配对的性能,与最新的硬件实现相比,其速度提高了5.4倍。使用此算法,我们在硬件中实现了一个配对处理器,该处理器以204 MHz的频率运行,并分别在4.22 ms和2.91 ms内完成了256位BN曲线的一次ate和Rate配对计算。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号