【24h】

Wavelet Domain Superresolution reconstruction of Infrared Image Sequences

机译:红外序列的小波域超分辨率重建

获取原文
获取原文并翻译 | 示例

摘要

Many automatic target recognition, detection, and identification problems usually suffer from lack of adequate resolution of the image data, especially among infrared imaging systems. A number of superresolution reconstruction algorithms have been proposed. The challenge is how to recapture additional high-frequency information from adjacent frames in an image sequence that contains slightly different, but unique, information. In addition, real-world infrared sequence images are noisy with low contrast, and low spatial resolution. Since broad-banded noise mainly affects high-frequency information to be recaptured, the challenge is how to avoid smoothing out the high-frequency data by the regularization are not smoothed out. This paper presents a new superresolution reconstruction approach based on wavelet domain for superresolution image reconstruction of infra-red (IR) sequences. Minimizing the regularization cost function in wavelet domain forms a multi-scale high-resolution estimate. The effects of noise are incorporated into the iterative process in the proposed method. The estimation errors in high- and low-frequency bands are processed separately to solve the problem of variable correlations of observed images and slow convergence. The proposed approach was tested on the infrared aerial image sequences provided by Defence Research Establishment in Valcartier. Experiment results show that a significant increase in the spatial resolution can be achieved by the proposed approach while the noise is smoothed out.
机译:许多自动目标识别,检测和识别问题通常会受到图像数据分辨率不足的困扰,尤其是在红外成像系统中。已经提出了许多超分辨率重建算法。面临的挑战是如何在图像序列中从相邻帧中重新捕获其他高频信息,该图像序列包含稍有不同但唯一的信息。此外,现实世界中的红外序列图像具有低对比度和低空间分辨率的噪声。由于宽带噪声主要影响要捕获的高频信息,因此面临的挑战是如何避免不通过正则化来平滑高频数据。本文提出了一种基于小波域的红外(IR)超分辨率图像重建新方法。在小波域中最小化正则化代价函数可形成多尺度的高分辨率估计。在所提出的方法中,将噪声的影响纳入迭代过程。分别处理高频带和低频频带中的估计误差,以解决观测图像的可变相关性和收敛速度慢的问题。在Valcartier的国防研究机构提供的红外航拍图像序列上测试了该方法。实验结果表明,在消除噪声的同时,该方法可以显着提高空间分辨率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号