首页> 外文会议>Conference on Image Processing and Pattern Recognition in Remote Sensing Oct 25-27, 2002 Hangzhou, China >Automatic extraction of road networks from remotely sensed images based on GIS knowledge
【24h】

Automatic extraction of road networks from remotely sensed images based on GIS knowledge

机译:基于GIS知识的遥感图像自动提取道路网

获取原文
获取原文并翻译 | 示例

摘要

Automatic extracting and updating road networks is a key work for updating geo -spatial information especially in developing countries. In this paper, a whole framework for automatic road extraction is presented firstly. Then the strategy and algorithms using GIS data for road extraction are discussed. A hybrid method based on structure information and statistical information for road extraction is emphasized in this paper. Different extraction strategy and grouping techniques are employed for different extracting methods. Because of the importance of structure information in road extraction, the extraction of candidate road segments based on structure information is described. For road extraction from images with different resolution based on structure information, different grouping technique is applied. The grouping technique based on whole relation and the grouping technique based on new profile tracing algorithm is separatel employed for images with low resolution and with high resolution. The road extraction based on statistical information is the supplement of structure information. A new statistical model is presented and the c andidate road-tracing algorithm based on adaptive template is discussed. And the grouping based on ribbon-snake model is briefly introduced. Automatic road recognition is a necessary task for automatic extracting road networks. So aiming at this we put all kinds of road recognition knowledge into the knowledge base and build a road recognition expert system. The fuzzy theory is applied for representing road models and road knowledge reasoning. The strategy for using global information to guide the further r oad extraction is presented. At last some examples and the summary are given.
机译:自动提取和更新道路网络是更新地理空间信息的关键工作,尤其是在发展中国家。本文首先提出了自动道路提取的整个框架。然后讨论了使用GIS数据进行道路提取的策略和算法。本文着重介绍了一种基于结构信息和统计信息的混合道路提取方法。不同的提取方法采用不同的提取策略和分组技术。由于结构信息在道路提取中的重要性,因此描述了基于结构信息的候选路段的提取。为了基于结构信息从具有不同分辨率的图像中提取道路,使用了不同的分组技术。低分辨率和高分辨率图像分别采用基于整体关系的分组技术和基于新的轮廓跟踪算法的分组技术。基于统计信息的道路提取是结构信息的补充。提出了一种新的统计模型,讨论了基于自适应模板的候选道路跟踪算法。并简要介绍了基于带状蛇模型的分组。自动道路识别是自动提取道路网络的必要任务。因此,针对此,我们将各种道路识别知识放入知识库中,并构建了道路识别专家系统。模糊理论被用于表示道路模型和道路知识推理。提出了使用全局信息指导进一步的方法提取的策略。最后给出了一些例子和总结。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号