首页> 外文会议>Conference on Applications of Artificial Neural Networks in Image Processing Ⅵ Jan 25-26, 2001, San Jose, USA >Learning and Generating Color Textures with Recurrent Multiple Class Random Neural Networks
【24h】

Learning and Generating Color Textures with Recurrent Multiple Class Random Neural Networks

机译:使用递归多类随机神经网络学习和生成颜色纹理

获取原文
获取原文并翻译 | 示例

摘要

We propose a method for learning and generating image textures based on learning the weights of a recurrent Multiple Class Random Neural Network (MCRNN) from the color texture image. The network we use has a neuron which corresponds to each image pixel, and the local connectivity of the neurons reflects the adjacent structure of neighboring neurons. The same trained recurrent network is then used to generate a synthetic texture that imitates the original one. The proposed texture, learning technique is efficient and its computation time is small. Texture generation is also fast. This work is a refinement and extension of our earlier work where we considered learning of grey-level textures and the generation of grey level or color textures. We have tested our method with different synthetic and natural textures. The experimental results show that the MCRNN can efficiently model a large category of color homogeneous microtextures. Statistical features extracted from the co-occurrence matrix of the original and the MCRNN based texture are used to confirm the quality of fit of our approach.
机译:我们提出了一种基于从彩色纹理图像中学习递归多类随机神经网络(MCRNN)权重的方法来学习和生成图像纹理的方法。我们使用的网络具有与每个图像像素相对应的神经元,并且神经元的局部连通性反映了相邻神经元的相邻结构。然后,将相同的经过训练的递归网络用于生成模仿原始纹理的合成纹理。所提出的纹理学习技术是有效的并且其计算时间短。纹理生成也很快。这项工作是对我们先前工作的改进和扩展,在该工作中,我们考虑了学习灰度纹理以及生成灰度或彩色纹理的过程。我们已经用不同的合成和天然纹理测试了我们的方法。实验结果表明,MCRNN可以有效地建模大范围的颜色均质微纹理。从原始和基于MCRNN的纹理的共现矩阵提取的统计特征用于确认我们方法的拟合质量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号