【24h】

Hidden Markov Model-based Spectral measure for Hyperspectral Image Analysis

机译:基于隐马尔可夫模型的光谱度量用于高光谱图像分析

获取原文
获取原文并翻译 | 示例

摘要

A Hidden Markov Model (HMM)-based spectral measure is proposed. The basic idea is to model a hyperspectral spectral vector as a stochastic process where the spectral correlation and band-to-band variability are modeled by a hidden Markov process with parameters determined by the spectrum of the vector that forms a sequence of observations. In order to evaluate the performance of this new measure, it is further compared to two commonly used spectral measures, Euclidean Distance (ED), Spectral Angle Mapper (SAM) and a recently proposed Spectral Information Divergence (SID). The experimental results show that the HMMID performs more effective than the other three measures in characterizing spectral information at the expense of computatonal complexity.
机译:提出了一种基于隐马尔可夫模型(HMM)的频谱测量方法。基本思想是将高光谱光谱向量建模为随机过程,其中光谱相关性和频带间变异性是通过隐马尔可夫过程建模的,其参数由形成观察序列的向量光谱确定。为了评估此新措施的性能,将其与两种常用的光谱措施进行了比较:欧氏距离(ED),光谱角度映射器(SAM)和最近提出的光谱信息发散(SID)。实验结果表明,HMMID在表征频谱信息方面比其他三种措施更有效,但以计算复杂性为代价。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号