首页> 外文会议>Conference on Advanced Signal Processing Algorithms, Architectures, and Implementations XIII; Aug 6-8, 2003; San Diego, California, USA >Fast non-iterative single-blur 2-D blind deconvolution of separable and low-rank point-spread functions from finite-support images
【24h】

Fast non-iterative single-blur 2-D blind deconvolution of separable and low-rank point-spread functions from finite-support images

机译:来自有限支持图像的可分离和低秩点扩散函数的快速非迭代单模糊二维盲反卷积

获取原文
获取原文并翻译 | 示例

摘要

The problem of 2-D blind deconvolution is to reconstruct an unknown image from its 2-D convolution with an unknown blur function. Motivated by the superior restoration quality achieved by the recently proposed nullspace-based multichannel image restoration methods, we propose a single-blur restoration approach that avoids the restrictive assumption of multichannel blurring and has the advantage of lower complexity. The assumption made about the image and the blur function is that they both have a finite spatial extent with that of the image being known. Also, the blur is assumed to be either separable or low-rank. If the blur is separable the image can be restored perfectly under noiseless conditions. When the blur is low-rank, favorable results can be achieved if the blur function has large spatial extent relative to the image. This requirement makes the proposed solution suitable for the cases where the degraded images are severely blurred.
机译:二维盲反卷积的问题是要使用未知模糊函数从其二维卷积中重建未知图像。受最近提出的基于空空间的多通道图像恢复方法实现的卓越恢复质量的推动,我们提出了一种单模糊恢复方法,该方法避免了多通道模糊的限制性假设,并具有较低复杂度的优势。关于图像和模糊函数的假设是,它们都具有有限的空间范围,并且图像的范围是已知的。同样,模糊被认为是可分离的或低等级的。如果模糊是可分离的,则可以在无噪声的条件下完美还原图像。当模糊度较低时,如果模糊功能相对于图像具有较大的空间范围,则可以获得良好的结果。该要求使得所提出的解决方案适合于退化图像严重模糊的情况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号