首页> 外文会议>Conference on Advanced Signal Processing Algorithms, Architectures, and Implementations XIII; Aug 6-8, 2003; San Diego, California, USA >Recursive training methods for robust classification: A sequential analytic centering approach to the support vector machine
【24h】

Recursive training methods for robust classification: A sequential analytic centering approach to the support vector machine

机译:鲁棒分类的递归训练方法:支持向量机的顺序分析居中方法

获取原文
获取原文并翻译 | 示例

摘要

The support vector machine (SVM) is a supervised learning algorithm used in a variety of applications, including robust target classification. The SVM training problem can be formulated as dense quadratic programming problem (QP). In practice, this QP is solved in batch mode, using general-purpose interior-point solvers. Although quite efficient, these implementations are not well suited in situations where the training vectors are made available sequentially. In this paper we discuss a recursive algorithm for SVM training. The algorithm is based on efficient updates of approximate solutions on the dual central path of the QP and can be analyzed using the convergence theory recently developed for interior-point methods. The idea is related to cutting-plane methods for large-scale optimization and sequential analytic centering techniques used successfully in set-membership estimation methods in signal processing.
机译:支持向量机(SVM)是一种监督学习算法,可用于多种应用程序,包括强大的目标分类。 SVM训练问题可以表述为密集二次规划问题(QP)。实际上,此QP是使用通用内点求解器以批处理模式求解的。尽管效率很高,但是这些实现方式并不十分适合顺序使用训练向量的情况。在本文中,我们讨论了一种用于SVM训练的递归算法。该算法基于对QP的双中心路径上的近似解的有效更新,并且可以使用最近针对内点方法开发的收敛理论进行分析。这个想法与用于大规模优化的切平面方法和在信号处理的集成员估计方法中成功使用的顺序分析定心技术有关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号