首页> 外文会议>Conference on Advanced Signal Processing Algorithms, Architectures, and Implementations XIII; Aug 6-8, 2003; San Diego, California, USA >LARGE DYNAMIC RANGE TIME-FREQUENCY SIGNAL ANALYSIS WITH APPLICATION TO HELICOPTER DOPPLER RADAR DATA
【24h】

LARGE DYNAMIC RANGE TIME-FREQUENCY SIGNAL ANALYSIS WITH APPLICATION TO HELICOPTER DOPPLER RADAR DATA

机译:大动态范围时频信号分析及其在直升机多普勒雷达数据中的应用

获取原文
获取原文并翻译 | 示例

摘要

Despite the enhanced time-frequency analysis (TFA) detailing capability of quadratic TFAs like the Wigner and Cohen representations, their performance with signals of large dynamic range (DNR in excess of 40 dB) is not acceptable due to the inability to totally suppress the cross-term artifacts which typically are much stronger than the weakest signal components that they obscure. AMTI and GMTI radar targets exhibit such high dynamic range when microDoppler is present, with the aspects of interest being the weakest components. This paper presents one of two modifications of linear TFA to provide the enhanced detailing behavior of quadratic TFAs without introducing cross terms, making it possible to see the time-frequency detail of extremely weak signal components. The technique described here is based on subspace-enhanced linear predictive extrapolation of the data within each analysis window to create a longer data sequence for conventional STFT TFA. The other technique, based on formation of a special two-dimensional transformed data matrix analyzed by high-definition two-dimensional spectral analysis methods such as 2-D AR or 2-D minimum variance, is compared to the new technique using actual AMTI and GMTI radar data.
机译:尽管像Wigner和Cohen表示这样的二次TFA具有增强的时频分析(TFA)详细功能,但由于不能完全抑制交叉,因此它们在大动态范围信号(DNR超过40 dB)上的性能还是不可接受的术语伪像通常比它们所掩盖的最弱的信号分量要强得多。当存在微型多普勒雷达时,AMTI和GMTI雷达目标展现出如此高的动态范围,而关注的方面是最弱的组件。本文介绍了线性TFA的两个修改之一,以提供二次TFA的增强的详细行为,而无需引入交叉项,从而可以查看极弱信号分量的时频细节。此处描述的技术基于每个分析窗口内数据的子空间增强线性预测外推法,从而为常规STFT TFA创建更长的数据序列。另一种技术是基于特殊二维变换数据矩阵的形成,该数据矩阵是通过高清二维光谱分析方法(例如2-D AR或2-D最小方差)进行分析的,与使用实际AMTI和GMTI雷达数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号