首页> 外文会议>Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on >Random walks based multi-image segmentation: Quasiconvexity results and GPU-based solutions
【24h】

Random walks based multi-image segmentation: Quasiconvexity results and GPU-based solutions

机译:基于随机游走的多图像分割:准凸度结果和基于GPU的解决方案

获取原文
获取原文并翻译 | 示例

摘要

We recast the Cosegmentation problem using Random Walker (RW) segmentation as the core segmentation algorithm, rather than the traditional MRF approach adopted in the literature so far. Our formulation is similar to previous approaches in the sense that it also permits Cosegmentation constraints (which impose consistency between the extracted objects from ≥ 2 images) using a nonparametric model. However, several previous nonparametric cosegmentation methods have the serious limitation that they require adding one auxiliary node (or variable) for every pair of pixels that are similar (which effectively limits such methods to describing only those objects that have high entropy appearance models). In contrast, our proposed model completely eliminates this restrictive dependence — the resulting improvements are quite significant. Our model further allows an optimization scheme exploiting quasiconvexity for model-based segmentation with no dependence on the scale of the segmented foreground. Finally, we show that the optimization can be expressed in terms of linear algebra operations on sparse matrices which are easily mapped to GPU architecture. We provide a highly specialized CUDA library for Cosegmentation exploiting this special structure, and report experimental results showing these advantages.
机译:我们使用随机沃克(RW)分割作为核心分割算法,而不是到目前为止文献中采用的传统MRF方法,重铸了Cosegmentation问题。我们的公式与以前的方法类似,在某种意义上,它还允许使用非参数模型进行Cosegmentation约束(在从≥2张图像中提取的对象之间施加一致性)。但是,几种先前的非参数同节分割方法存在严重的局限性,即它们要求为每对相似的像素对添加一个辅助节点(或变量)(这有效地将此类方法限制为仅描述具有高熵外观模型的那些对象)。相比之下,我们提出的模型完全消除了这种限制性依赖性-所产生的改进是非常重要的。我们的模型进一步允许一种优化方案,该方案利用拟凸性进行基于模型的分割,而无需依赖于分割前景的规模。最后,我们表明优化可以用稀疏矩阵上的线性代数运算来表示,该运算很容易映射到GPU架构。我们利用这种特殊的结构为协作细分提供了高度专业的CUDA库,并报告了显示这些优势的实验结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号