首页> 外文会议>Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on >Detecting regions of interest in dynamic scenes with camera motions
【24h】

Detecting regions of interest in dynamic scenes with camera motions

机译:通过摄像机运动检测动态场景中的感兴趣区域

获取原文
获取原文并翻译 | 示例

摘要

We present a method to detect the regions of interests in moving camera views of dynamic scenes with multiple moving objects. We start by extracting a global motion tendency that reflects the scene context by tracking movements of objects in the scene. We then use Gaussian process regression to represent the extracted motion tendency as a stochastic vector field. The generated stochastic field is robust to noise and can handle a video from an uncalibrated moving camera. We use the stochastic field for predicting important future regions of interest as the scene evolves dynamically. We evaluate our approach on a variety of videos of team sports and compare the detected regions of interest to the camera motion generated by actual camera operators. Our experimental results demonstrate that our approach is computationally efficient and provides better predictions than previously proposed RBF-based approaches.
机译:我们提出一种方法来检测具有多个移动对象的动态场景的移动摄像机视图中的感兴趣区域。我们首先通过跟踪场景中对象的运动来提取反映场景上下文的全局运动趋势。然后,我们使用高斯过程回归将提取的运动趋势表示为随机向量场。生成的随机场对噪声具有鲁棒性,并且可以处理来自未经校准的移动摄像机的视频。当场景动态变化时,我们使用随机场预测重要的未来感兴趣区域。我们评估各种团队运动视频的方法,并将检测到的感兴趣区域与实际摄像机操作员产生的摄像机运动进行比较。我们的实验结果表明,与以前提出的基于RBF的方法相比,我们的方法具有更高的计算效率和更好的预测效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号