首页> 外文会议>Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on >A Riemannian approach for estimating orientation distribution function (ODF) images from high-angular resolution diffusion imaging (HARDI)
【24h】

A Riemannian approach for estimating orientation distribution function (ODF) images from high-angular resolution diffusion imaging (HARDI)

机译:利用黎曼方法从高角度分辨率扩散成像(HARDI)估计方向分布函数(ODF)图像

获取原文
获取原文并翻译 | 示例

摘要

High-angular resolution diffusion imaging (HARDI) is a magnetic resonance technique estimating the direction of self-diffusion of water molecules in biological tissue. HARDI encodes at each pixel (voxel) the orientation distribution function (ODF) of water diffusion molecules, i.e. the probability distribution function of finding a water molecule which moved in a certain direction during the observation time. As a consequence ODF images differ from usual gray scale images with respect to their underlying geometry as well as with respect to their error distribution. We present a Bayesian estimator for ODF images considering these differences. To this end, we derive a likelihood function based on the Rician distribution of the NMR signals and propose prior distributions considering ODFs as Riemanian manifolds. Utilizing properties of spherical harmonics and the square root representation of ODFs allows us to effectively reconstruct and regularize ODF images in one step within this Riemannian framework. Experiments demonstrate the merits of our approach on synthetic as well as on real data.
机译:高角度分辨率扩散成像(HARDI)是一种磁共振技术,可估计生物组织中水分子的自我扩散方向。 HARDI在每个像素(体素)处编码水扩散分子的方向分布函数(ODF),即找到在观察时间内沿某个方向移动的水分子的概率分布函数。因此,ODF图像的基本几何形状以及误差分布与普通的灰度图像不同。考虑到这些差异,我们提出了ODF图像的贝叶斯估计器。为此,我们基于NMR信号的Rician分布推导了似然函数,并提出了将ODF视为Riemanian流形的先验分布。利用球谐函数的特性和ODF的平方根表示,使我们能够在此黎曼框架内一步有效地重建和规范化ODF图像。实验证明了我们的方法在合成数据和真实数据上的优点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号