【24h】

What are good parts for hair shape modeling?

机译:什么是头发造型的好零件?

获取原文
获取原文并翻译 | 示例

摘要

Hair plays an important role in human appearance. However, hair segmentation is still a challenging problem partially due to the lack of an effective model to handle its arbitrary shape variations. In this paper, we present a part-based model robust to hair shape and environment variations. The key idea of our method is to identify local parts by promoting the effectiveness of the part-based model. To this end, we propose a measurable statistic, called Subspace Clustering Dependency (SC-Dependency), to estimate the co-occurrence probabilities between local shapes. SC-Dependency guarantees output reasonability and allows us to evaluate the effectiveness of part-wise constraints in an information-theoretic way. Then we formulate the part identification problem as an MRF that aims to optimize the effectiveness of the potential functions. Experiments are performed on a set of consumer images and show our algorithm's capability and robustness to handle hair shape variations and extreme environment conditions.
机译:头发在人类外观中起着重要作用。但是,由于缺乏有效的模型来处理其任意形状变化,头发分割仍然是一个具有挑战性的问题。在本文中,我们提出了一种对头发形状和环境变化具有鲁棒性的基于零件的模型。我们方法的关键思想是通过提高基于零件的模型的有效性来识别局部零件。为此,我们提出了一个可测量的统计量,称为子空间聚类相关性(SC-Dependency),以估计局部形状之间的共现概率。 SC-Dependency保证了输出的合理性,并允许我们以信息论的方式评估部分约束的有效性。然后,我们将零件识别问题表述为旨在优化潜在功能有效性的MRF。在一组消费者图像上进行的实验表明了我们算法处理头发形状变化和极端环境条件的能力和鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号