【24h】

Automated annotation of coral reef survey images

机译:自动标注珊瑚礁调查图像

获取原文
获取原文并翻译 | 示例

摘要

With the proliferation of digital cameras and automatic acquisition systems, scientists can acquire vast numbers of images for quantitative analysis. However, much image analysis is conducted manually, which is both time consuming and prone to error. As a result, valuable scientific data from many domains sit dormant in image libraries awaiting annotation. This work addresses one such domain: coral reef coverage estimation. In this setting, the goal, as defined by coral reef ecologists, is to determine the percentage of the reef surface covered by rock, sand, algae, and corals; it is often desirable to resolve these taxa at the genus level or below. This is challenging since the data exhibit significant within class variation, the borders between classes are complex, and the viewpoints and image quality vary. We introduce Moorea Labeled Corals, a large multi-year dataset with 400,000 expert annotations, to the computer vision community, and argue that this type of ecological data provides an excellent opportunity for performance benchmarking. We also propose a novel algorithm using texture and color descriptors over multiple scales that outperforms commonly used techniques from the texture classification literature. We show that the proposed algorithm accurately estimates coral coverage across locations and years, thereby taking a significant step towards reliable automated coral reef image annotation.
机译:随着数码相机和自动采集系统的普及,科学家可以采集大量图像进行定量分析。但是,很多图像分析是手动进行的,既费时又容易出错。结果,来自许多领域的有价值的科学数据处于休眠状态,等待注解。这项工作解决了一个这样的领域:珊瑚礁覆盖率估计。在这种情况下,珊瑚礁生态学家定义的目标是确定被岩石,沙子,藻类和珊瑚覆盖的礁石表面百分比;通常需要在属级或以下级别解析这些分类单元。这是具有挑战性的,因为数据在类别变化内表现出显着的价值,类别之间的边界很复杂,并且视点和图像质量也会变化。我们向计算机视觉社区介绍了Moorea标记的珊瑚(Moorea Labeled Corals),这是一个具有40万个专家注释的大型多年数据集,并认为此类生态数据为性能基准测试提供了绝佳机会。我们还提出了一种新颖的算法,该算法在多个尺度上使用纹理和颜色描述符,其性能优于纹理分类文献中的常用技术。我们表明,所提出的算法可以准确估算跨位置和跨年的珊瑚覆盖率,从而朝着可靠的自动化珊瑚礁图像注释迈出了重要一步。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号