首页> 外文会议>Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on >Bag of textons for image segmentation via soft clustering and convex shift
【24h】

Bag of textons for image segmentation via soft clustering and convex shift

机译:用于通过软聚类和凸移进行图像分割的文本袋

获取原文
获取原文并翻译 | 示例

摘要

We propose an unsupervised image segmentation method based on texton similarity and mode seeking. The input image is first convolved with a filter-bank, followed by soft clustering on its filter response to generate textons. The input image is then superpixelized where each belonging pixel is regarded as a voter and a soft voting histogram is constructed for each superpixel by averaging its voters'' posterior texton probabilities. We further propose a modified mode seeking method — called convex shift — to group superpixels and generate segments. The distribution of superpixel histograms is modeled nonparametrically in the histogram space, using Kullback-Leibler divergence (K-L divergence) and kernel density estimation. We show that each kernel shift step can be formulated as a convex optimization problem with linear constraints. Experiment on image segmentation shows that convex shift performs mode seeking effectively on an enforced histogram structure, grouping visually similar superpixels. With the incorporation of texton and soft voting, our method generates reasonably good segmentation results on natural images with relatively complex contents, showing significant superiority over traditional mode seeking based segmentation methods, while outperforming or being comparable to state of the art methods.
机译:我们提出了一种基于文本相似度和模式寻找的无监督图像分割方法。首先将输入图像与滤波器组卷积,然后对其滤波器响应进行软聚类以生成文本。然后对输入图像进行超像素化处理,其中将每个所属像素视为投票者,并通过平均每个投票者的后验概率来为每个超像素构造一个软投票直方图。我们还提出了一种改进的模式搜索方法(称为凸移),以对超像素进行分组并生成片段。使用Kullback-Leibler散度(K-L散度)和核密度估计,在直方图空间中非参数地建模超像素直方图的分布。我们表明,每个核移位步骤都可以表述为具有线性约束的凸优化问题。图像分割实验表明,凸移在强制直方图结构上有效地进行了模式搜索,将视觉上相似的超像素分组。通过结合texton和软投票,我们的方法在内容相对复杂的自然图像上产生了相当好的分割结果,与传统的基于模式搜索的分割方法相比,显示出显着的优势,同时其性能优于或可与现有方法媲美。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号