首页> 外文会议>Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on >Learning hierarchical representations for face verification with convolutional deep belief networks
【24h】

Learning hierarchical representations for face verification with convolutional deep belief networks

机译:通过卷积深度置信网络学习分层表示以进行人脸验证

获取原文
获取原文并翻译 | 示例

摘要

Most modern face recognition systems rely on a feature representation given by a hand-crafted image descriptor, such as Local Binary Patterns (LBP), and achieve improved performance by combining several such representations. In this paper, we propose deep learning as a natural source for obtaining additional, complementary representations. To learn features in high-resolution images, we make use of convolutional deep belief networks. Moreover, to take advantage of global structure in an object class, we develop local convolutional restricted Boltzmann machines, a novel convolutional learning model that exploits the global structure by not assuming stationarity of features across the image, while maintaining scalability and robustness to small misalignments. We also present a novel application of deep learning to descriptors other than pixel intensity values, such as LBP. In addition, we compare performance of networks trained using unsupervised learning against networks with random filters, and empirically show that learning weights not only is necessary for obtaining good multilayer representations, but also provides robustness to the choice of the network architecture parameters. Finally, we show that a recognition system using only representations obtained from deep learning can achieve comparable accuracy with a system using a combination of hand-crafted image descriptors. Moreover, by combining these representations, we achieve state-of-the-art results on a real-world face verification database.
机译:大多数现代人脸识别系统都依赖于由手工制作的图像描述符给出的特征表示,例如局部二进制模式(LBP),并且通过组合几种这样的表示来实现更高的性能。在本文中,我们建议深度学习作为获取其他补充表示的自然来源。为了学习高分辨率图像中的特征,我们利用了卷积深度置信网络。此外,为了在对象类中利用全局结构,我们开发了局部卷积受限的Boltzmann机器,这是一种新颖的卷积学习模型,该模型通过不假设图像中特征的平稳性来利用全局结构,同时保持对小错位的可伸缩性和鲁棒性。我们还提出了深度学习对除像素强度值以外的描述符(例如LBP)的新颖应用。此外,我们将使用无监督学习训练的网络与具有随机滤波器的网络的性能进行了比较,并根据经验表明,学习权重不仅是获得良好多层表示所必需的,而且还为选择网络体系结构参数提供了鲁棒性。最后,我们表明,仅使用从深度学习中获得的表示的识别系统,就可以与结合使用手工图像描述符的系统实现相当的精度。此外,通过组合这些表示,我们可以在真实的人脸验证数据库上获得最新的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号