首页> 外文会议>Computer Modelling and Simulation, 2009. UKSIM '09 >Data Partitioning and Image Segmentation by Use of Information Compression and Graph Structures
【24h】

Data Partitioning and Image Segmentation by Use of Information Compression and Graph Structures

机译:通过使用信息压缩和图结构进行数据分割和图像分割

获取原文
获取原文并翻译 | 示例

摘要

In this paper we propose a multistage computational procedure for partitioning of large data sets and for segmentation of images. In the first step the original ldquorawrdquo data set (or the set of pixels from a given image) is compressed by use of the neural-gas unsupervised learning algorithm into compressed information model (CIM) that contains small predefined number of neurons. In the second step a graph structure is generated by using all the neurons as nodes of the graph and a number of consistent arcs. Two kinds of consistent arcs are defined here, namely crisp and fuzzy arcs that lead to the respective crisp and fuzzy graph structures. The crisp graphs use the Euclidean distance between the nodes as ldquoarc lengthsrdquo. The fuzzy graphs use weighted arcs with different ldquoarc strengthsrdquo, computed by using the weights of the respective adjacent neurons. The third step identifies the number of the strongly connected elements (called also ldquoconnected areasrdquo) in the generated graph structure from the previous step. This is done by using the well known depth-first graph algorithm. Then each connected area corresponds to a respective segment of the given data or image. The proposed computational scheme and its application are demonstrated and explained by two test examples consisting of process data and an image.
机译:在本文中,我们提出了一个用于大型数据集的分割和图像分割的多阶段计算程序。第一步,通过使用神经气体无监督学习算法将原始的原始数据集(或给定图像中的像素集)压缩为包含少量预定义神经元的压缩信息模型(CIM)。在第二步中,通过使用所有神经元作为图的节点和许多一致的弧线来生成图结构。这里定义了两种一致的弧,即导致各自的清晰图和模糊图结构的清晰弧和模糊弧。清晰图使用节点之间的欧几里得距离作为“长度”。模糊图使用具有不同“ ldararc”强度的加权弧,这是通过使用各个相邻神经元的权重来计算的。第三步从上一步中识别生成的图结构中的强连接元素(也称为“连接区域”)的数量。这是通过使用众所周知的深度优先图算法完成的。然后,每个连接区域对应于给定数据或图像的相应段。通过两个由过程数据和图像组成的测试示例来演示和解释所提出的计算方案及其应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号