首页> 外文会议>Computational Science - ICCS 2007 pt.3; Lecture Notes in Computer Science; 4489 >Application of Classification Methods to Individual Disability Income Insurance Fraud Detection
【24h】

Application of Classification Methods to Individual Disability Income Insurance Fraud Detection

机译:分类方法在个人残疾收入保险欺诈检测中的应用

获取原文
获取原文并翻译 | 示例

摘要

As the number of electronic insurance claims increases each year, it is difficult to detect insurance fraud in a timely manner by manual methods alone. The objective of this study is to use classification modeling techniques to identify suspicious policies to assist manual inspections. The predictive models can label high-risk policies and help investigators to focus on suspicious records and accelerate the claim-handling process. The study uses health insurance data with some known suspicious and normal policies. These known policies are used to train the predictive models. Missing values and irrelevant variables are removed before building predictive models. Three predictive models: Naive Bayes (NB), decision tree, and Multiple Criteria Linear Programming (MCLP), are trained using the claim data. Experimental study shows that NB outperformed decision tree and MCLP in terms of classification accuracy.
机译:随着电子保险索赔的数量逐年增加,仅通过人工方法很难及时发现保险欺诈。这项研究的目的是使用分类建模技术来识别可疑策略,以帮助进行手动检查。预测模型可以标记高风险策略,并帮助调查人员将精力集中在可疑记录上,并加快索赔处理过程。该研究使用具有某些已知可疑和正常政策的健康保险数据。这些已知的策略用于训练预测模型。在建立预测模型之前,将缺失的值和不相关的变量删除。使用索赔数据训练了三个预测模型:朴素贝叶斯(NB),决策树和多准则线性规划(MCLP)。实验研究表明,在分类准确度方面,NB优于决策树和MCLP。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号