首页> 外文会议>Computational Science - ICCS 2007 pt.1; Lecture Notes in Computer Science; 4487 >DDDAS/ITR: A Data Mining and Exploration Middleware for Grid and Distributed Computing
【24h】

DDDAS/ITR: A Data Mining and Exploration Middleware for Grid and Distributed Computing

机译:DDDAS / ITR:用于网格和分布式计算的数据挖掘和探索中间件

获取原文
获取原文并翻译 | 示例

摘要

We describe our project that marries data mining together with Grid computing. Specifically, we focus on one data mining application - the Minnesota Intrusion Detection System (MINDS), which uses a suite of data mining based algorithms to address different aspects of cyber security including malicious activities such as denial-of-service (DoS) traffic, worms, policy violations and inside abuse. MINDS has shown great operational success in detecting network intrusions in several real deployments. In sophisticated distributed cyber attacks using a multitude of wide-area nodes, combining the results of several MINDS instances can enable additional early-alert cyber security. We also describe a Grid service system that can deploy and manage multiple MINDS instances across a wide-area network.
机译:我们描述了将数据挖掘与网格计算结合在一起的项目。具体来说,我们专注于一个数据挖掘应用程序-明尼苏达州入侵检测系统(MINDS),该系统使用一套基于数据挖掘的算法来解决网络安全的各个方面,包括恶意活动,例如拒绝服务(DoS)流量,蠕虫,违反政策和内部滥用。 MINDS在检测几个实际部署中的网络入侵方面已显示出巨大的运营成功。在使用大量广域节点的复杂分布式网络攻击中,结合多个MINDS实例的结果可以实现额外的预警网络安全。我们还描述了一种网格服务系统,该系统可以在广域网中部署和管理多个MINDS实例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号