首页> 外文会议>Computational methods in transport: Verification and validation >A General Strategy for Physics-Based Model Validation Illustrated with Earthquake Phenomenology, Atmospheric Radiative Transfer, and Computational Fluid Dynamics
【24h】

A General Strategy for Physics-Based Model Validation Illustrated with Earthquake Phenomenology, Atmospheric Radiative Transfer, and Computational Fluid Dynamics

机译:基于物理模型验证的一般策略,以地震现象学,大气辐射传递和计算流体动力学为例

获取原文

摘要

Validation is often defined as the process of determining the degree to which a model is an accurate representation of the real world from the perspective of its intended uses. Validation is crucial as industries and governments depend increasingly on predictions by computer models to justify their decisions. In this article, we survey the model validation literature and propose to formulate validation as an iterative construction process that mimics the process occurring implicitly in the minds of scientists. We thus offer a formal representation of the progressive build-up of trust in the model, and thereby replace incapacitating claims on the impossibility of validating a given model by an adaptive process of constructive approximation. This approach is better adapted to the fuzzy, coarse-grained nature of validation. Our procedure factors in the degree of redundancy versus novelty of the experiments used for validation as well as the degree to which the model predicts the observations. We illustrate the new methodology first with the maturation of Quantum Mechanics as arguably the best established physics theory and then with several concrete examples drawn from some of our primary scientific interests: a cellular automaton model for earthquakes, an anomalous diffusion model for solar radiation transport in the cloudy atmosphere, and a computational fluid dynamics code for the Richtmyer-Meshkov instability.
机译:验证通常被定义为从模型的预期用途的角度确定模型对现实世界的准确表示的程度的过程。验证至关重要,因为行业和政府越来越依赖计算机模型的预测来证明其决策的合理性。在本文中,我们将对模型验证文献进行调查,并提出将验证公式化为一种迭代构造过程,该过程模仿科学家心中暗中发生的过程。因此,我们提供了模型中信任逐步建立的形式表示,从而通过自适应的构造近似方法代替了对无法验证给定模型的无能为力的主张。这种方法更好地适应了验证的模糊,粗粒度性质。我们的程序会影响用于验证的实验的冗余程度与新颖性之间的关系,以及模型预测观测结果的程度。首先,我们以量子力学作为最成熟的物理学理论的成熟来阐述这种新方法,然后从我们的一些主要科学兴趣中举几个具体的例子:地震的细胞自动机模型,太阳辐射传输的反常扩散模型。多云的气氛,以及Richtmyer-Meshkov不稳定性的计算流体动力学代码。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号