...
首页> 外文期刊>International Journal of Multiphase Flow >A self-consistent, physics-based boiling heat transfer modeling framework for use in computational fluid dynamics
【24h】

A self-consistent, physics-based boiling heat transfer modeling framework for use in computational fluid dynamics

机译:用于计算流体动力学的自一致的物理沸腾传热建模框架

获取原文
获取原文并翻译 | 示例

摘要

Computational Fluid Dynamics (CFD) offers the opportunity to investigate physically and geometrically complex systems with high fidelity. Its applicability to multiphase flow, and particularly boiling heat transfer, is currently limited by the lack of appropriate closure models to describe all relevant phenomena. In this paper, we present an original subcooled flow boiling modeling framework for CFD, which aims at consistently and accurately characterizing the key physics that affect heat transfer at the boiling surface. The new framework introduces a fully mechanistic representation of heterogeneous boiling that improves numerical robustness and reduces sensitivity to closure coefficients. The proposed formulation is inspired by new experimental insight, and significantly extends the existing boiling models by capturing the effects of (i) the microlayer on surface evaporation, (H) the boiling surface, and (Hi) bubbles sliding along the boiling surface. A new statistical treatment of the location and mutual interactions of bubbles on the surface allows for mechanistic prediction of the dry surface area, an important quantity that affects the boiling heat transfer coefficient. This approach lends itself naturally to extension to very high heat fluxes, potentially up to the critical heat flux. An assessment and sensitivity study of the model is presented for a range of mass fluxes (500-1250 kg/m(2)/s), heat fluxes (100-1600 kW/m(2)), inlet subcoolings (5, 10, 15 K), and pressures (1, 1.5, 2 bars), demonstrating improved robustness and predictive accuracy at all tested conditions in comparison to traditional heat partitioning approaches, including high heat fluxes, where classic models often fail to converge. Lastly, the framework proposed here should not be viewed as another heat partitioning model, but rather as a general platform that allows incorporation of advanced models for each physical phenomenon considered, leveraging the growing insight generated by modern experimental diagnostics for boiling heat transfer. (C) 2017 Elsevier Ltd. All rights reserved.
机译:计算流体动力学(CFD)提供了在具有高保真度的物理和几何复杂系统进行调查的机会。其对多相流动的适用性,特别是沸腾的传热,目前受到适当的封闭模型来描述所有相关现象的限制。在本文中,我们提出了一种用于CFD的原始过冷却流沸腾建模框架,其旨在始终如一,准确地表征影响沸腾表面在沸腾的传热的关键物理学。新框架介绍了异质沸腾的全面机械表示,可提高数值稳健性并降低对闭合系数的敏感性。所提出的配方通过新的实验识启发,通过捕获(i)微层对表面蒸发的影响,(H)沿沸点滑动的沸腾气泡来显着扩展现有的沸腾模型。对表面上气泡的位置和相互相互作用的新统计处理允许干燥表面积的机械预测,这是影响沸腾传热系数的重要量。这种方法自然地延伸到非常高的热通量,可能达到临界热通量。模型的评估和敏感性研究显示为一系列质量助熔剂(500-1250kg / m(2)/ s),热通量(100-1600 kW / m(2)),入口过脱机(5,10 15 k)和压力(1,1.5,2bars),与传统的热量分配方法相比,在所有测试条件下,在包括高热量通量的情况下,展示了改善的鲁棒性和预测准确性,其中经典模型经常收敛。最后,这里提出的框架不应被视为另一个热分区模型,而是作为一个允许为每种物理现象融入所考虑的先进模型的一般平台,利用现代实验诊断产生的越来越高的洞察力来沸腾传热。 (c)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号