首页> 外文会议>Computational Methods and Clinical Applications for Spine Imaging >Cortical Bone Thickness Estimation in CT Images: A Model-Based Approach Without Profile Fitting
【24h】

Cortical Bone Thickness Estimation in CT Images: A Model-Based Approach Without Profile Fitting

机译:CT图像中的皮质骨厚度估计:基于模型的方法,无需轮廓拟合

获取原文
获取原文并翻译 | 示例

摘要

Structure of cortical bone is decisive for its strength, and quantification of the structure is crucial for early diagnosis of osteoporosis and monitoring of therapy effect. In three-dimensional computed tomography (CT) images, typically cortical thickness in proximal femur, lumbar vertebrae, and sometimes in distal forearm is estimated. However, resolution of clinical quantitative CT (QCT) scanners is comparable to the cortical thickness, especially for osteoporotic patients, leading to significant partial volume artefacts. A recent model-based approach recovers the cortical bone thickness by numerically deconvolving the image (profile fitting) using an estimated scanner point spread function (PSF) and a hypothesized uniform cortical bone mineralization level (reference density). In this work we provide an essentially analytical unique solution to the model-based cortex recovery problem using few characteristics of the measured profile and thus eliminate the non-linear optimization step for deconvolution. The proposed approach allowed to get rid of the PSF in the model and reduce the sensitivity to errors in the reference density value. Also, run-time and memory effective implementation of the proposed method can be done with the help of a lookup table. The method was compared to an existing approach and to the 50% relative threshold technique by evaluating performance of these three algorithms in a simulated environment with noise and various error levels in the reference density parameter. Finally, accuracy of the proposed algorithm was validated using CT acquisitions of European Forearm Phantom Ⅱ, a widely used anthropomorphic standard of cortical and trabecular bone compartments that was scanned with various protocols.
机译:皮质骨的结构对其强度起决定性作用,而结构的量化对于骨质疏松症的早期诊断和治疗效果的监测至关重要。在三维计算机断层扫描(CT)图像中,通常估计股骨近端,腰椎以及有时在前臂远端的皮质厚度。但是,临床定量CT(QCT)扫描仪的分辨率与皮层厚度相当,特别是对于骨质疏松症患者,会导致明显的部分体积伪像。最近的基于模型的方法通过使用估计的扫描器点扩散函数(PSF)和假设的均匀皮质骨矿化水平(参考密度)对图像进行数值解卷积(轮廓拟合)来恢复皮质骨厚度。在这项工作中,我们使用很少的测量轮廓特征为基于模型的皮层恢复问题提供了一种本质上分析独特的解决方案,从而消除了反卷积的非线性优化步骤。所提出的方法允许摆脱模型中的PSF,并降低对参考密度值误差的敏感性。此外,可以借助查找表来完成所建议方法的运行时和内存有效实现。通过在模拟环境中评估这三种算法的性能,并在参考密度参数中存在噪声和各种错误级别的情况下,将该方法与现有方法和50%相对阈值技术进行了比较。最后,通过欧洲前臂PhantomⅡ的CT采集验证了所提算法的准确性,欧洲前臂PhantomⅡ是一种广泛使用的皮质和小梁骨腔室的拟人化标准,并通过各种协议对其进行了扫描。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号