首页> 外文会议>Computational Mechanics >Three-Dimensional Mixed-Mode Crack Growth Modeling in Electro-Magneto-Thermo-Elastic Coupled Viscoplastic Multiphase Composites by Time-Domain Hypersingular Integral Equation Method
【24h】

Three-Dimensional Mixed-Mode Crack Growth Modeling in Electro-Magneto-Thermo-Elastic Coupled Viscoplastic Multiphase Composites by Time-Domain Hypersingular Integral Equation Method

机译:电-磁-热-弹性耦合粘塑性多相复合材料三维混合模式裂纹扩展的时域超奇异积分方程法建模

获取原文

摘要

Electro-magneto-thermo-elastic coupled viscoplastic multiphase composites (EMTE-CVP-MCs) typically exhibit pronounced nonlinear response under sufficiently higher electro-magneto-thermo-elastic (EMTE) coupled incremental loading conditions. These extended incremental loads are causing higher extended incremental stresses than under corresponding static extended incremental loads and may induce crack initiation, crack growth and finally lead to fracture or failure of structures. However, relatively little work has been done to the three-dimensional crack growth problem in EMTE-CVP-MCs, because of the present limitations both practical and theoretical. These require us to provide with general precious and accurate theoretical method by use of mathematics tools, and found efficiently numerical method. This work presents a time-domain hypersingular integral equation (TD-HYE) method proposed by the author for modeling three-dimensional mixed-mode crack growth in EMTE-CVP-MCs under extended incremental loads rate through intricate theoretical analysis and numerical simulations. Using Green’s functions, the extended general incremental displacement rate solutions are obtained by time-domain boundary element method. This crack growth problem is reduced to solving a set of TD-HYEs coupled with boundary integral equations, in which the unknown functions are the extended incremental displacement discontinuities gradient. Then, the behavior of the extended incremental displacement discontinuities gradient around the crack front terminating at the interface is analyzed by the time-domain main-part nalysis method of TD-HYE. Also, analytical solutions of the extended singular incremental stresses gradient and extended incremental integral g I J &near the crack front in EMTE-CVP-MCs are provided. In addition, a numerical method of the TD-HYE for a three-dimensional mixed-mode crack subjected to extended incremental loads rate is put forward with the extended incremental displacement discontinuities gradient approximated by the product of basic density functions and polynomials. Finally, several examples are presented to demonstrate the application of the proposed method.
机译:电磁-热弹耦合粘塑性多相复合材料(EMTE-CVP-MC)通常在足够高的电磁-热弹耦合(EMTE)耦合增量载荷条件下表现出明显的非线性响应。这些扩展增量载荷比相应的静态扩展增量载荷引起更大的扩展增量应力,并且可能引起裂纹萌生,裂纹扩展并最终导致结构破裂或破坏。但是,由于目前在实践和理论上的局限性,对EMTE-CVP-MC中的三维裂纹扩展问题所做的工作相对较少。这就要求我们利用数学工具提供通用的,宝贵的,准确的理论方法,并找到有效的数值方法。这项工作提出了作者提出的时域超奇异积分方程(TD-HYE)方法,用于通过复杂的理论分析和数值模拟来模拟EMTE-CVP-MC在扩展增量载荷率下的三维混合模式裂纹扩展。利用格林函数,通过时域边界元方法获得扩展的一般增量位移率解。将此裂纹扩展问题简化为求解与边界积分方程耦合的一组TD-HYE,其中未知函数为扩展的增量位移不连续性梯度。然后,通过TD-HYE的时域主成分分析方法,分析了在裂纹尖端终止于界面处的扩展增量位移不连续性梯度的行为。此外,还提供了扩展的奇异增量应力梯度和扩展的增量积分g I J以及EMTE-CVP-MC中裂纹前沿附近的解析解。此外,提出了TD-HYE的三维混合模式裂纹扩展数值加载方法,其扩展位移增量不连续性梯度近似为基本密度函数和多项式的乘积。最后,给出了几个例子来说明该方法的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号