首页> 外文会议>Computational linguistics and intelligent text processing >Selecting the N-Top Retrieval Result Lists for an Effective Data Fusion
【24h】

Selecting the N-Top Retrieval Result Lists for an Effective Data Fusion

机译:选择N-Top检索结果列表以进行有效的数据融合

获取原文
获取原文并翻译 | 示例

摘要

Although the application of data fusion in information retrieval has yielded good results in the majority of the cases, it has been noticed that its achievement is dependent on the quality of the input result lists. In order to tackle this problem, in this paper we explore the combination of only the n-top result lists as an alternative to the fusion of all available data. In particular, we describe a heuristic measure based on redundancy and ranking information to evaluate the quality of each result list, and, consequently, to select the presumably n-best lists per query. Preliminary results in four IR test collections, containing a total of 266 queries, and employing three different DF methods are encouraging. They indicate that the proposed approach could significantly outperform the results achieved by fusion all available lists, showing improvements in mean average precision of 10.7%, 3.7% and 18.8% when it was used along with Maximum RSV, CombMNZ and Fuzzy Borda methods.
机译:尽管在大多数情况下,数据融合在信息检索中的应用已产生了良好的结果,但已经注意到,其实现取决于输入结果列表的质量。为了解决这个问题,在本文中,我们探索仅将n个结果列表组合起来,作为融合所有可用数据的替代方法。特别是,我们描述了一种基于冗余和排名信息的启发式测度,以评估每个结果列表的质量,并因此为每个查询选择大概n个最佳列表。四个IR测试合集中的初步结果令人鼓舞,该结果总共包含266个查询,并采用了三种不同的DF方法。他们表明,所提出的方法可以显着优于通过融合所有可用列表而获得的结果,与Maximum RSV,CombMNZ和Fuzzy Borda方法一起使用时,平均平均精度提高了10.7%,3.7%和18.8%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号