首页> 外文会议>Computational Intelligence in Cyber Security, 2009. CICS '09 >Study of fuzzy clustering methods for malicious codes using native API call frequency
【24h】

Study of fuzzy clustering methods for malicious codes using native API call frequency

机译:基于原生API调用频率的恶意代码模糊聚类方法研究

获取原文

摘要

The Native API is a system call which can only be accessed with the authentication of the administrator. It can be used to detect a variety of malicious codes which can only be executed with the administrator's authority. Therefore, much research is being done on detection methods using the characteristics of the Native API. Most of these researches are being done by using supervised learning methods of machine learning. However, the classification standards of Anti-Virus companies do not reflect the characteristics of the Native API Call. As a result the population data used in the supervised learning methods is not accurate. Therefore, more research is needed on the topic of classification standards using the Native API for detection. This paper proposes a method for classifying malicious codes using a fuzzy clustering method with the Native API Call standard. The accuracy of the proposed method uses machine learning to compare detection rates with previous classifying methods for evaluation.
机译:本机API是只能通过管理员身份访问的系统调用。它可以用来检测各种恶意代码,这些恶意代码只能在管理员授权下执行。因此,正在对使用本机API的特征的检测方法进行大量研究。这些研究大多数是通过使用机器学习的监督学习方法来完成的。但是,防病毒公司的分类标准不能反映本机API调用的特征。结果,在监督学习方法中使用的人口数据不准确。因此,需要更多有关使用本机API进行检测的分类标准主题的研究。本文提出了一种使用本机API调用标准的模糊聚类方法对恶意代码进行分类的方法。所提出方法的准确性使用机器学习来将检测率与先前的分类方法进行比较以进行评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号