首页> 外文会议>Composites at Lake Louise 2017 >BIOINSPIRED DESIGN OF STRUCTURAL AND THERMAL MATERIALS
【24h】

BIOINSPIRED DESIGN OF STRUCTURAL AND THERMAL MATERIALS

机译:结构和热材料的生物启发设计

获取原文
获取原文并翻译 | 示例

摘要

This talk focuses on the fundamental ideas arising from understanding the mechanisms behind the superior mechanical and thermal properties of biological materials through four specific examples of nacre, bamboo, cartildge, teeth, and lipid bilayers. The mechanical behavior and toughening mechanisms of abalone nacre-inspired multilayered materials are explored. In nacre's structure, the organic matrix, pillars and the roughness of the aragonite platelets play important roles in its overall mechanical performance. A micromechanical model for multilayered biological materials is proposed to simulate their mechanical deformation and toughening mechanisms. The modeling results are in excellent agreement with the available experimental data for abalone nacre. The highly nonlinear behavior of the proposed multilayered material is the result of distributed deformation in the nacre-like structure due to the existence of nano-asperities and nano-pillars with near theoretical strength. Finally, tensile toughness is studied as a function of the components in the microstructure of nacre. Bamboo, a fast-growing grass, has higher strength-to-weight ratios than steel and concrete. The unique properties of bamboo come from the natural composite structure of fibers that comprises mainly cellulose nanofibrils in a matrix of intertwined hemicellulose and lignin called lignin-carbohydrate complex (LCC). Here we have experimentally and numerically studied mechanical and fracture properties of bamboo at multiple scale. We have utilized atomistic simulations to investigate the mechanical properties and mechanisms of the interactions of these materials in the structure of bamboo fibers. It is shown that a control hemicellulose model has better thermodynamic and mechanical properties than lignin while lignin exhibits greater tendency to adhere to cellulose nanofibril. Therefore, the role of hemicellulose found to be enhancing the mechanical properties while lignin provides the strength of bamboo fibers. Lastly, given the amphiphilic nature and chemical structure, phospholipids exhibit a strong thermotropic and lyotropic phase behavior in an aqueous environment. We performed non-equilibrium molecular dynamics simulations for a range of different temperature gradients. The results show that the thermal properties of the DPPC bilayer are highly dependent on the temperature gradient. Higher temperature gradients cause an increase in the thermal conductivity of the DPPC lipid bilayer. We also found that the thermal conductivity of DPPC is lowest at the transition temperature whereby one lipid leaflet is in the gel phase and the other is in the liquid crystalline phase. This is essentially related to a growth in thermal resistance between the two leaflets of lipid at the transition temperature. These results provide significant new insights into developing new thermal insulation for engineering applications.
机译:本演讲的重点是通过理解珍珠层,竹层,软骨,牙齿和脂质双层的四个特定示例,了解生物材料卓越的机械和热性能背后的机理而产生的基本思想。探索了鲍鱼珍珠质多层材料的力学行为和增韧机理。在珍珠母的结构中,有机基质,柱子和文石片的粗糙度在其整体机械性能中起着重要作用。提出了多层生物材料的微机械模型,以模拟其机械变形和增韧机理。建模结果与鲍鱼珍珠质的可用实验数据非常吻合。所提出的多层材料的高度非线性行为是由于珍珠层结构中分布变形的结果,这是由于存在具有接近理论强度的纳米粗糙物和纳米柱。最后,研究了拉伸韧性与珍珠母微结构中组分的关系。竹子是一种快速生长的草,其强度重量比比钢和混凝土高。竹子的独特特性来自纤维的天然复合结构,该结构主要在半纤维素和木质素交织的基质中包含纤维素纳米原纤维,称为木质素-碳水化合物复合物(LCC)。在这里,我们通过实验和数值研究了竹材的多尺度力学和断裂性能。我们已经利用原子模拟研究了竹纤维结构中这些材料的机械性能和相互作用机理。结果表明,对照半纤维素模型比木质素具有更好的热力学和机械性能,而木质素表现出更大的粘附纤维素纳米原纤维的趋势。因此,发现半纤维素的作用是增强机械性能,而木质素提供竹纤维的强度。最后,考虑到两亲性质和化学结构,磷脂在水性环境中表现出很强的热致和溶致相行为。我们对一系列不同的温度梯度进行了非平衡分子动力学模拟。结果表明,DPPC双层的热性能高度依赖于温度梯度。较高的温度梯度会导致DPPC脂质双层的热导率增加。我们还发现,DPPC的热导率在转变温度最低,其中一个脂质小叶处于凝胶相,另一个脂质小叶处于液晶相。这基本上与在转变温度下脂质的两个小叶之间的热阻的增加有关。这些结果为开发用于工程应用的新型隔热材料提供了重要的新见识。

著录项

  • 来源
    《Composites at Lake Louise 2017》|2017年|34-34|共1页
  • 会议地点 Lake Louise(CA)
  • 作者

    Nima Rahbar;

  • 作者单位

    Worcester Polytechnic Institute, USA;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号