首页> 外文会议>Composites at Lake Louise 2015 >PHYSICAL AGING AND GLASS TRANSITION OF SINGLE COMPONENT NANOCOMPOSITES
【24h】

PHYSICAL AGING AND GLASS TRANSITION OF SINGLE COMPONENT NANOCOMPOSITES

机译:单组分纳米复合材料的物理老化和玻璃态转化

获取原文
获取原文并翻译 | 示例

摘要

Matrix free assemblies of polymer-grafted, "hairy" nanoparticles (HNP) exhibit novel morphology, dielectric and mechanical properties, as well as providing means to overcome dispersion challenges ubiquitous to conventional polymer-inorganic blended nanocomposites. Physical aging of the amorphous polymer glass between the close-packed nanoparticles (NPs) will dominate long-term stability. However, the energetics of cooperative relaxation of tethered chains confined within the interstitial spaces in single component nanocomposites is unknown. Herein, we compare glass transition temperature (Tg) and physical aging behavior of matrix free assemblies of HNPs (aHNPs) to conventional NP-polymer blends, across different nano-silica loadings (0-50 v/v%) and brush architecture of grafted polystyrene chains in aHNPs. At low to intermediate silica volume fraction, the Tg of blended nanocomposites is independent of silica content, whereas for aHNPs the Tg decreases with silica content, implying that chain tethering decreases local segment density near the NP interface irrespective of chain composition, molecular weight or polymer-NP interactions. In contrast, the Tg of the aHNPs is higher than linear polystyrene of comparable molecular weight to the graft, implying that cooperativity is constrained. Within the glass (T<Tg), local segment relaxation near Tg is retarded irrespective of polymer-silica tethering. This arrested enthalpy recovery rate is less hindered than comparable processes in neat PS, however. This leads to the emergence of a cross-over temperature Tx, at which the enthalpy recovery process of the bulk glass becomes dominant in aHNPs and blended nanocomposites. Differences in structural recovery of aHNP and blended nanocomposites occur only at the highest silica loadings (~ 50 v/v%), where enthalpy recovery for aHNPs is substantially suppressed relative to the blended counterparts. The virtually absent physical aging within aHNPs at high loadings is independent of brush architecture (graft density or molecular weight of tethered chains) and indicates that impact of chain tethering on structural relaxation starts to evolve at particle-particle surface separations on the order of the Kuhn length. aHNPs therefore represent a highly stable alternative to traditional nanocomposite blends at the highest inorganic loadings, which are essential for optoelectronic applications, with minimal susceptibility to property creep due to physical aging.
机译:聚合物接枝的“毛状”纳米颗粒(HNP)的无基质组合物表现出新颖的形态,介电和机械性能,并提供了克服常规聚合物-无机共混纳米复合材料普遍存在的分散难题的手段。紧密堆积的纳米颗粒(NP)之间的非晶态聚合物玻璃的物理老化将决定长期稳定性。然而,限制在单组分纳米复合材料的间隙空间内的束缚链的协同松弛的能量学是未知的。在这里,我们比较了在不同的纳米二氧化硅负载量(0-50 v / v%)和接枝刷结构下,HNP(aHNPs)与常规的NP-聚合物共混物的无矩阵组件的玻璃化转变温度(Tg)和物理老化行为aHNP中的聚苯乙烯链。在低至中等的二氧化硅体积分数下,共混纳米复合材料的Tg与二氧化硅含量无关,而对于aHNPs,Tg随二氧化硅含量而降低,这意味着链束缚会降低NP界面附近的局部链段密度,而与链组成,分子量或聚合物无关-NP相互作用。相反,aHNP的Tg高于分子量与接枝分子量相当的线性聚苯乙烯,这意味着协同性受到限制。在玻璃内(T <Tg),无论聚合物-硅系链如何,Tg附近的局部链节弛豫都受到抑制。但是,与纯PS中的可比过程相比,该捕集的焓回收率受到的阻碍较小。这导致出现交叉温度Tx,在该温度下,块状玻璃的焓恢复过程在aHNP和混合的纳米复合材料中占主导地位。 aHNPs和混合纳米复合材料的结构回收率差异仅在最高二氧化硅填充量(〜50 v / v%)时出现,相对于混合对应物,aHNPs的焓回收率显着降低。在高负荷下,aHNP内部几乎不存在物理老化,这与刷子的结构(接枝密度或束缚链的分子量)无关,并且表明链束缚对结构弛豫的影响开始于颗粒-颗粒表面分离(Kuhn级)开始发展长度。因此,aHNP在无机负载量最高的情况下代表了传统纳米复合材料混合物的高度稳定替代物,这对于光电应用而言是必不可少的,并且对由于物理老化而引起的特性蠕变的敏感性最小。

著录项

  • 来源
    《Composites at Lake Louise 2015》|2015年|301-302|共2页
  • 会议地点 Lake Louise(CA)
  • 作者

    Hilmar Koerner;

  • 作者单位

    Air Force Research Laboratory USA;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号