首页> 外文会议>Combinatorial optimization and applications >Approximating Multilinear Monomial Coefficients and Maximum Multilinear Monomials in Multivariate Polynomials
【24h】

Approximating Multilinear Monomial Coefficients and Maximum Multilinear Monomials in Multivariate Polynomials

机译:多元多项式中的逼近多线性单项式系数和最大多线性单项式

获取原文
获取原文并翻译 | 示例

摘要

This paper is our third step towards developing a theory of testing monomials in multivariate polynomials and concentrates on two problems: (1) How to compute the coefficients of multilinear monomials; and (2) how to find a maximum multilinear monomial when the input is a ∏∑∏ polynomial. We first prove that the first problem is #P-hard and then devise a O~*(3~ns(n)) upper bound for this problem for any polynomial represented by an arithmetic circuit of size s(n). Later, this upper bound is improved to O~*(2~n) for ∏∑∏ polynomials. We then design fully polynomial-time randomized approximation schemes for this problem for ∏∑ polynomials. On the negative side, we prove that, even for ∏∑∏ polynomials with terms of degree ≤ 2, the first problem cannot be approximated at all for any approximation factor ≥ 1, nor "weakly approximated" in a much relaxed setting, unless P=NP. For the second problem, we first give a polynomial time λ-approximation algorithm for ∏∑∏ polynomials with terms of degrees no more a constant λ ≥ 2. On the inapproximability side, we give a n~(1-ε/2 lower bound, for any ε > 0, on the approximation factor for ∏∑∏ polynomials. When the degrees of the terms in these polynomials are constrained as < 2, we prove a 1.0476 lower bound, assuming P ≠ NP; and a higher 1.0604 lower bound, assuming the Unique Games Conjecture.
机译:本文是我们发展多元多项式检验单项式理论的第三步,主要集中在两个问题上:(1)如何计算多元线性单项式的系数; (2)当输入为∏∑∏多项式时,如何找到最大多线性单项式。我们首先证明第一个问题是#P-hard,然后针对大小为s(n)的算术电路表示的任何多项式,设计该问题的O〜*(3〜ns(n))上限。后来,将∏∑∏多项式的上限提高到O〜*(2〜n)。然后,我们针对∏∑多项式设计此问题的完全多项式时间随机逼近方案。在负方面,我们证明,即使对于度数≤2的terms∑∏多项式,对于任何近似值≥1,第一个问题也无法完全近似,也不能在非常宽松的环境中“弱近似”,除非P = NP。对于第二个问题,我们首先给出for∑∏多项式的多项式时间λ逼近算法,其度项不再是常数λ≥2。在不可逼近方面,我们给出〜(1-ε/ 2的下界,对于任何ε> 0,在on∑∏多项式的逼近因子上,当这些多项式中的项的度数约束为<2时,我们假设P≠NP证明了1.0476的下界,而更高的1.0604的下界,假设唯一游戏猜想。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号