首页> 外文会议>Combinatorial algorithms >On the Maximal Number of Cubic Subwords in a String
【24h】

On the Maximal Number of Cubic Subwords in a String

机译:关于字符串中三次子词的最大数目

获取原文
获取原文并翻译 | 示例

摘要

We investigate the problem of the maximum number of cubic subwords (of the form www) in a given word. We also consider square subwords (of the form ww). The problem of the maximum number of squares in a word is not well understood. Several new results related to this problem are produced in the paper. We consider two simple problems related to the maximum number of subwords which are squares or which are highly repetitive; then we provide a nontrivial estimation for the number of cubes. We show that the maximum number of squares xx such that x is not a primitive word (nonprimitive squares) in a word of length n is exactly 「n/2」- 1, and the maximum number of subwords of the form x~k, for k ≥ 3, is exactly n - 2. In particular, the maximum number of cubes in a word is not greater than n - 2 either. Using very technical properties of occurrences of cubes, we improve this bound significantly. We show that the maximum number of cubes in a word of length n is between 45/100 n and 4/5 n.
机译:我们研究给定单词中立方子单词(形式为www)的最大数目的问题。我们还考虑方形子字(形式为ww)。一个单词中最大平方数的问题尚未得到很好的理解。与该问题有关的一些新结果在本文中产生。我们考虑两个简单的问题,这些问题与子字的最大数目有关,即正方形或高度重复。那么我们将对立方体的数量提供非平凡的估计。我们证明,在长度为n的单词中,x不是原始单词(非原始正方形)的最大平方xx数正好是“ n / 2” -1,并且x〜k形式的最大子单词数是如果k≥3,则恰好是n-2。特别是,单词中的最大立方体数也不大于n-2。利用多维数据集出现的非常技术性的属性,我们可以大大改善此边界。我们表明,长度为n的单词中的最大立方体数在45/100 n和4/5 n之间。

著录项

  • 来源
    《Combinatorial algorithms》|2009年|P.345-355|共11页
  • 会议地点 Hradec nad Moravici(CZ);Hradec nad Moravici(CZ)
  • 作者单位

    Department of Mathematics, Computer Science and Mechanics, University of Warsaw, Warsaw, Poland;

    rnDepartment of Mathematics, Computer Science and Mechanics, University of Warsaw, Warsaw, Poland;

    rnDepartment of Mathematics, Computer Science and Mechanics, University of Warsaw, Warsaw, Poland Faculty of Mathematics and Informatics, Copernicus University, Torun, Poland;

    rnDepartment of Mathematics, Computer Science and Mechanics, University of Warsaw, Warsaw, Poland;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 计算技术、计算机技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号