首页> 外文会议>Colloidal nanoparticles for biomedical applications X >Size dependence of gold nanorod stability: the need for customized surface chemistry
【24h】

Size dependence of gold nanorod stability: the need for customized surface chemistry

机译:金纳米棒稳定性的尺寸依赖性:需要定制的表面化学

获取原文
获取原文并翻译 | 示例

摘要

Nanoparticles can be synthesized in a wide array of shapes and sizes to suit specific biomedical applications in therapy and imaging. Prerequisite to such applications are particle stability in biological environments, non-toxicity, and facile conjugation of the particle surface with targeting biological moieties (such as antibodies). Here we report significant flaws in the common methods used to functionalize the surface of gold nanorods (GNRs) of larger-than-usual sizes. We find that while GNRs of sizes smaller than 50×15 nm can be effectively stabilized by polyethylene glycol (PEG)-based methods, larger GNRs form major aggregates and crash under similar functionalization conditions. Large GNRs may provide enhanced imaging sensitivity in biological applications due to greater optical extinction cross sections, provided that the GNRs can be made biostable. In this study, GNRs of sizes up to 90 × 30 nm were synthesized using two different published methods. Particle morphology and size distributions were characterized using Transmission Electron Microscopy (TEM), and optical spectra were measured by Vis-NIR Spectrometry. The colloidal stability of different-sized GNRs was assayed at various stages of functionalization using zeta potential and Vis-NIR measurements. The results of these experiments indicate that large GNRs functionalized with PEG undergo irreversible aggregation after minimal washing. We find that coating large GNRs with polystyrene sulfonate (PSS) instead of PEG vastly improves GNR stability in water and serum. Moreover, we provide a novel platform for conjugating biomolecules of interest to PSS-coated large GNRs. We show that larger GNRs produce stronger photoacoustic signal than commonly used smaller GNRs, indicating an advantage of using large GNRs for biomedical imaging. Our observations underscore that the biomedical advantages of novel nanoparticle synthesis methods may not be realized without tailored surface functionalization methods. More generally, our results suggest that materially-identical nanoparticles (i.e. GNRs) exhibit varying stability as a function of particle size.
机译:可以以各种各样的形状和尺寸合成纳米颗粒,以适合治疗和成像中的特定生物医学应用。此类应用的前提条件是生物环境中的颗粒稳定性,无毒性以及颗粒表面与靶向生物部分(例如抗体)的容易结合。在这里,我们报告了用于使大于正常尺寸的金纳米棒(GNR)表面功能化的常用方法中的重大缺陷。我们发现,虽然尺寸小于50×15 nm的GNR可以通过基于聚乙二醇(PEG)的方法有效地稳定,但较大的GNR却会形成主要聚集体,并在相似的功能化条件下发生崩溃。大的GNR可能会由于更大的光学消光截面而在生物应用中提高成像灵敏度,前提是可以使GNR保持生物稳定。在这项研究中,使用两种不同的公开方法合成了大小高达90×30 nm的GNR。使用透射电子显微镜(TEM)表征颗粒的形态和尺寸分布,并通过Vis-NIR光谱法测量光谱。使用Zeta电位和Vis-NIR测量,在功能化的各个阶段测定了大小不同的GNR的胶体稳定性。这些实验的结果表明,用PEG官能化的大GNR在经过最少的洗涤后会发生不可逆的聚集。我们发现,用聚苯乙烯磺酸盐(PSS)代替PEG涂覆大的GNR可以极大地改善水和血清中GNR的稳定性。此外,我们提供了一种新颖的平台,用于将感兴趣的生物分子与PSS涂层的大GNR偶联。我们显示,较大的GNR比一般较小的GNR产生更强的光声信号,表明使用大型GNR进行生物医学成像的优势。我们的观察结果强调,没有定制的表面功能化方法可能无法实现新型纳米粒子合成方法的生物医学优势。更一般而言,我们的结果表明,材料相同的纳米颗粒(即GNR)表现出随粒度变化的稳定性。

著录项

  • 来源
  • 会议地点 San Francisco CA(US)
  • 作者单位

    Molecular Imaging Program at Stanford, Bio-X Program, Stanford University, Palo Alto, California 94305,Biophysics Program, Stanford University, Palo Alto, California 94305,Departments of Structural Biology, Stanford University, Palo Alto, California 94305;

    Molecular Imaging Program at Stanford, Bio-X Program, Stanford University, Palo Alto, California 94305,Departments of Structural Biology, Stanford University, Palo Alto, California 94305,Electrical Engineering, Stanford University, Palo Alto, California 94305;

    Molecular Imaging Program at Stanford, Bio-X Program, Stanford University, Palo Alto, California 94305,Departments of Structural Biology, Stanford University, Palo Alto, California 94305;

    Molecular Imaging Program at Stanford, Bio-X Program, Stanford University, Palo Alto, California 94305,Departments of Structural Biology, Stanford University, Palo Alto, California 94305;

    Molecular Imaging Program at Stanford, Bio-X Program, Stanford University, Palo Alto, California 94305,Biophysics Program, Stanford University, Palo Alto, California 94305,Departments of Structural Biology, Stanford University, Palo Alto, California 94305,Electrical Engineering, Stanford University, Palo Alto, California 94305;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    gold nanorods; size dependence; surface coating; stability; biomedical imaging;

    机译:金纳米棒;大小依赖性表面涂层;稳定性;生物医学影像;
  • 入库时间 2022-08-26 14:31:03

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号