首页> 外文会议>Cluster, Cloud and Grid Computing (CCGrid), 2012 12th IEEE/ACM International Symposium on >Distributed Shared Memory and Compiler-Induced Scalable Locality for Scalable Cluster Performance
【24h】

Distributed Shared Memory and Compiler-Induced Scalable Locality for Scalable Cluster Performance

机译:分布式共享内存和编译器引起的可扩展本地性,以实现可扩展群集性能

获取原文
获取原文并翻译 | 示例

摘要

Distributed shared memory software allows a cluster to function as a single collection of many processing cores with a large physical memory, but highly unusual performance parameters: communication latency and bandwidth between nodes may be several orders of magnitude worse than on-chip. Thus, effective use of such systems requires computation/communication ratios many times higher. The loop optimization known as "time skewing" or "time tiling" can, for some codes, produce arbitrarily high compute balance. It should thus allow scalable high performance regardless of memory and network bandwidth limitations. We have been exploring the scalability of time tiling on homogeneous dedicated clusters, considering the effects of scaling both the number of nodes in the cluster and the ratio of computation speed to network bandwidth. Even with simple 1- and 2-d Jacobi stencil computations, there are challenges to practical realization of the prediction of scalability.
机译:分布式共享内存软件允许群集充当具有大量物理内存的许多处理核心的单个集合,但是具有非常不寻常的性能参数:节点之间的通信等待时间和带宽可能比片上的性能差几个数量级。因此,有效使用这种系统需要较高的计算/通信比率。对于某些代码,称为“时间偏斜”或“时间平铺”的循环优化可以产生任意高的计算平衡。因此,无论内存和网络带宽限制如何,它都应允许可扩展的高性能。我们一直在研究均质专用群集上时间分片的可伸缩性,同时考虑到群集中节点数量的缩放以及计算速度与网络带宽之比的影响。即使使用简单的一维和二维Jacobi模版计算,可伸缩性预测的实际实现也面临挑战。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号