首页> 外文会议>Cluster, Cloud and Grid Computing (CCGrid), 2012 12th IEEE/ACM International Symposium on >ParaLite: Supporting Collective Queries in Database System to Parallelize User-Defined Executable
【24h】

ParaLite: Supporting Collective Queries in Database System to Parallelize User-Defined Executable

机译:ParaLite:在数据库系统中支持集体查询以并行化用户定义的可执行文件

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes extensions to parallel database systems called collective queries and User-Defined eXecutables (UDX). A collective query is an SQL query whose results are distributed to multiple clients and then processed by them in parallel, using arbitrary external programs (user-defined executables). The intended applications are data intensive work-flows, typically built out of various independently developed executables and scripts. Collective queries facilitate description of such workflows by making data parallel execution of external programs on big data easy and streamlined. It also provides the workflow developers with a familiar and powerful language SQL, for flexible data filtering and stereotypical data processing tasks. We implement this concept in a system "ParaLite", a parallel database system based on a popular lightweight database SQ Lite. It equips with data transfer optimization algorithms that distribute query results to multiple clients, taking both communication cost and compute loads into account. We verified the correctness and performance of Para Lite and the experimental results show that Para Lite has good performance on SQL processing and achieves good scalability for the parallelization of UDX.
机译:本文提出了对并行数据库系统的扩展,这些系统称为集合查询和用户定义的可执行文件(UDX)。集合查询是一种SQL查询,其结果分发到多个客户端,然后由它们使用任意外部程序(用户定义的可执行文件)并行处理。预期的应用程序是数据密集型工作流,​​通常由各种独立开发的可执行文件和脚本构建而成。集体查询通过简化和简化大数据上外部程序的数据并行执行,简化了此类工作流程的描述。它还为工作流开发人员提供了熟悉且功能强大的语言SQL,用于灵活的数据筛选和定型数据处理任务。我们在系统“ ParaLite”中实现了这一概念,该系统是基于流行的轻量级数据库SQ Lite的并行数据库系统。它配备了数据传输优化算法,可将查询结果分配给多个客户端,同时考虑了通信成本和计算负载。我们验证了Para Lite的正确性和性能,并且实验结果表明Para Lite在SQL处理方面具有良好的性能,并且为UDX的并行化提供了良好的可伸缩性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号