首页> 外文会议>Cluster, Cloud and Grid Computing (CCGrid), 2012 12th IEEE/ACM International Symposium on >SciMATE: A Novel MapReduce-Like Framework for Multiple Scientific Data Formats
【24h】

SciMATE: A Novel MapReduce-Like Framework for Multiple Scientific Data Formats

机译:SciMATE:一种适用于多种科学数据格式的新颖的MapReduce类框架

获取原文
获取原文并翻译 | 示例

摘要

Despite the popularity of MapReduce, there are several obstacles to applying it for developing scientific data analysis applications. Current MapReduce implementations require that data be loaded into specialized file systems, like the Hadoop Distributed File System (HDFS), whereas with rapidly growing size of scientific datasets, reloading data in another file system or format is not feasible. We present a framework that allows scientific data in different formats to be processed with a MapReduce like API. Our system is referred to as SciMATE, and is based on the MATE system developed at Ohio State. SciMATE is developed as a customizable system, which can be adapted to support processing on any of the scientific data formats. We have demonstrated the functionality of our system by creating instances that can be processing NetCDF and HDF5 formats as well as flat-files. We have also implemented three popular data mining applications and have evaluated their execution with each of the three instances of our system.
机译:尽管MapReduce颇受欢迎,但将其用于开发科学数据分析应用程序仍存在一些障碍。当前的MapReduce实施要求将数据加载到专用文件系统中,例如Hadoop分布式文件系统(HDFS),但是随着科学数据集规模的迅速增长,以另一种文件系统或格式重新加载数据是不可行的。我们提供了一个框架,该框架允许使用MapReduce之类的API处理不同格式的科学数据。我们的系统称为SciMATE,它基于俄亥俄州立大学开发的MATE系统。 SciMATE是作为可定制系统开发的,可以进行调整以支持对任何科学数据格式的处理。通过创建可以处理NetCDF和HDF5格式以及平面文件的实例,我们已经演示了系统的功能。我们还实现了三个流行的数据挖掘应用程序,并使用我们系统的三个实例分别评估了它们的执行情况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号