首页> 外文会议>Conference on Real-Time Photonic Measurements, Data Management, and Processing >A super-resolution reconstruction algorithm of infrared pedestrian images via compressed sensing
【24h】

A super-resolution reconstruction algorithm of infrared pedestrian images via compressed sensing

机译:压缩感知的红外行人图像超分辨率重建算法

获取原文

摘要

Pedestrian detection is the major task of many infrared surveillance system. Due to the technical limitation of sensor or the high cost of advanced hardware, the resolution of infrared images is usually low, which is not capable of meeting the high quality requirement of various applications. Compressed sensing capturing and represents compressible signals at a sample rate significantly below the Nyquist rate, is considered as a new framework for signal reconstruction based on the sparsity and compressibility. Thus, the compressed sensing theory enlightens a computational way to reconstruct a high resolution image on the basis of a sparse signal, i.e. the low resolution image. The proposed method use low resolution and high resolution infrared pedestrian images to train an over-complete dictionary through K-SVD algorithm, by which the pedestrian are sparsely well-represented. Two distant infrared cameras in the same scene are used to capture high and low resolution image to make sure same pedestrian pair is sparsely represented under the over-complete dictionary. Therefore the similarities are learning between input low resolution image patches and high resolution image patches. The popular greedy algorithm Orthogonal Matching Pursuit (OMP) is utilized for sparse reconstruction, providing optimal performance and guaranteeing less computational cost and storage. We evaluate the quality of reconstructed image employing root mean square error and peak signal to noise. The experimental results show that the reconstructed images preserve wealthy detailed information of pedestrian, and have low RMSE and high PSNR, which are superior to the traditional super-resolution methodologies.
机译:行人检测是许多红外监视系统的主要任务。由于传感器的技术局限性或先进硬件的高昂成本,红外图像的分辨率通常较低,无法满足各种应用的高质量要求。压缩感知捕获并以明显低于奈奎斯特速率的采样率表示可压缩信号,被认为是基于稀疏性和可压缩性的信号重建的新框架。因此,压缩感测理论启发了一种基于稀疏信号即低分辨率图像来重建高分辨率图像的计算方式。提出的方法利用低分辨率和高分辨率的红外行人图像,通过K-SVD算法训练过完备的字典,从而很好地表示了行人。同一场景中的两个远距离红外摄像机用于捕获高分辨率图像和低分辨率图像,以确保在完整字典中稀疏地表示同一对行人。因此,正在学习输入的低分辨率图像块和高分辨率图像块之间的相似性。流行的贪婪算法正交匹配追踪(OMP)用于稀疏重建,可提供最佳性能并保证较少的计算成本和存储量。我们利用均方根误差和峰值信噪比评估重建图像的质量。实验结果表明,重建后的图像保留了丰富的行人详细信息,具有较低的RMSE和较高的PSNR,优于传统的超分辨率方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号