首页> 外文会议>Conference on Image Processing >Automatic segmentation of the prostate on CT images using deep learning and multi-atlas fusion
【24h】

Automatic segmentation of the prostate on CT images using deep learning and multi-atlas fusion

机译:使用深度学习和多图谱融合在CT图像上自动分割前列腺

获取原文

摘要

Automatic segmentation of the prostate on CT images has many applications in prostate cancer diagnosis and therapy. However, prostate CT image segmentation is challenging because of the low contrast of soft tissue on CT images. In this paper, we propose an automatic segmentation method by combining a deep learning method and multi-atlas refinement. First, instead of segmenting the whole image, we extract the region of interesting (ROI) to delete irrelevant regions. Then, we use the convolutional neural networks (CNN) to learn the deep features for distinguishing the prostate pixels from the non-prostate pixels in order to obtain the preliminary segmentation results. CNN can automatically learn the deep features adapting to the data, which are different from some handcrafted features. Finally, we select some similar atlases to refine the initial segmentation results. The proposed method has been evaluated on a dataset of 92 prostate CT images. Experimental results show that our method achieved a Dice similarity coefficient of 86.80% as compared to the manual segmentation. The deep learning based method can provide a useful tool for automatic segmentation of the prostate on CT images and thus can have a variety of clinical applications.
机译:CT图像上的前列腺自动分割在前列腺癌的诊断和治疗中有许多应用。但是,由于CT图像上软组织的对比度较低,因此前列腺CT图像分割具有挑战性。在本文中,我们提出了一种将深度学习方法和多图集细化相结合的自动分割方法。首先,我们没有分割整个图像,而是提取了感兴趣的区域(ROI),以删除无关的区域。然后,我们使用卷积神经网络(CNN)学习用于区分前列腺像素与非前列腺像素的深度特征,以获得初步的分割结果。 CNN可以自动学习适应数据的深度特征,这与某些手工特征不同。最后,我们选择一些相似的地图集来完善初始分割结果。所提出的方法已在92个前列腺CT图像的数据集上进行了评估。实验结果表明,与人工分割相比,我们的方法获得的Dice相似系数为86.80%。基于深度学习的方法可为在CT图像上自动分割前列腺提供有用的工具,因此可具有多种临床应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号