首页> 外文会议>Conference on Dynamics of Systems, Mechanisms and Machines >The Fast Interpolation Transformation and the Sampling Theorem on the Basis of Bordering Functions for Recording the Wave Signals of Mechanical and Other Physical Fields
【24h】

The Fast Interpolation Transformation and the Sampling Theorem on the Basis of Bordering Functions for Recording the Wave Signals of Mechanical and Other Physical Fields

机译:基于边界函数的快速插值变换和采样定理,用于记录机械和其他物理场的波信号

获取原文

摘要

The approach of the fast interpolation of discrete signals in multi-speed microprocessor systems for recording signals of wave and resonance changes in mechanical and other physical fields is considered. Interpolation is carried out on the basis of bordering functions that simplify and accelerate the process of signal restoration. A set of interconnected sampling theorems is formulated on the basis of bordering functions for cases of uniform and non-uniform sampling of signals. A certain hierarchy of these theorems and their interrelation with the well-known Kotelnikov-Shannon sampling theorem are established. New concepts of a quasi-orthogonal system of basis functions and a quasi-unit matrix are proposed.
机译:考虑了在多速微处理器系统中对离散信号进行快速内插的方法,以记录机械和其他物理场中的波动和共振变化的信号。内插是在简化和加速信号恢复过程的边界函数的基础上进行的。在边界函数的基础上,针对信号的均匀和非均匀采样,制定了一组互连的采样定理。这些定理的一定层次结构及其与众所周知的Kotelnikov-Shannon采样定理的相互关系被建立。提出了基函数拟正交系统和拟单位矩阵的新概念。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号