首页> 外文会议>Ceramic microstructures : Control at the atomic level >THE CUBIC - TO - HEXAGONAL TRANSFORMATION TO TOUGHEN SiC
【24h】

THE CUBIC - TO - HEXAGONAL TRANSFORMATION TO TOUGHEN SiC

机译:从立方到六角转变为Toughen SiC

获取原文
获取原文并翻译 | 示例

摘要

Silicon carbide is a desirable high temperature structural material, however, its poor fracture toughness at room temperature has limited its practical application. Recent processing developments have toughened the microstructure with interlocking, plate-like grains and an ~1 nm thick amorphous grain boundary. Intergranular fracture around these elongated grains leads to crack deflection and elastic bridging behind an advancing crack tip, thereby giving rise to the fracture resistance. (K_c > 9 MPa m~(1/2).) Furthermore, the increase in interlocking that develops with the high aspect ratio results in an increase in room temperature strength even as grains grow. The plate-like microstructure arises from the cubic-to-hexagonal transformation in SiC, which must be judiciously controlled in order to insure full densification, to obtain a high aspect ratio, and to optimize the microstructure of the sintering additives. Thus this work evaluates this transformation using XRD, SEM and high resolution TEM. Although a multitude of literature discusses a transformation invoked by the motion of stacking faults and partial dislocations, this study has characterized a growth-induced transformation, with the initial beta grain acting as a seed on which the alpha grows. Further growth of dual-phase grains develops asymmetric faceting on the plate-like surfaces, which, coupled with crystalline triple junction phases, complicate the intergranular crack path and increase the effect of interlocking.
机译:碳化硅是理想的高温结构材料,但是,其在室温下差的断裂韧性限制了其实际应用。近来的加工技术发展使具有互锁的板状晶粒和约1 nm厚的无定形晶界强化了显微组织。这些细长晶粒周围的晶间断裂导致裂纹偏转和前进的裂纹尖端后面的弹性桥接,从而产生抗断裂性。 (K_c> 9 MPa m〜(1/2)。)此外,随着长径比的增加,互锁的增加导致室温强度的增加,即使晶粒长大。板状微结构是由SiC中的立方到六方相转变产生的,必须对其进行谨慎控制,以确保完全致密化,获得高纵横比并优化烧结添加剂的微结构。因此,这项工作使用XRD,SEM和高分辨率TEM评估了这种转变。尽管大量文献讨论了堆垛层错和部分位错运动引起的转变,但这项研究的特征是生长诱发的转变,最初的β晶粒充当α生长的种子。双相晶粒的进一步生长会在板状表面上形成不对称的刻面,再加上结晶的三重结合相,使晶间裂纹路径复杂化并增加了互锁的效果。

著录项

  • 来源
  • 会议地点 Berkeley CA(US)
  • 作者单位

    Materials Sciences Division Lawrence Berkeley National Laboratory University of California, Berkeley Berkeley, CA 94720;

    Materials Sciences Division Lawrence Berkeley National Laboratory University of California, Berkeley Berkeley, CA 94720;

    Materials Sciences Division Lawrence Berkeley National Laboratory University of California, Berkeley Berkeley, CA 94720;

    Materials Sciences Division Lawrence Berkeley National Laboratory University of California, Berkeley Berkeley, CA 94720;

    Materials Sciences Division Lawrence Berkeley National Laboratory University of California, Berkeley Berkeley, CA 94720;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 TQ174.01;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号