首页> 外文会议>Biological and Medical Data Analysis; Lecture Notes in Bioinformatics; 4345 >Effectivity of Internal Validation Techniques for Gene Clustering
【24h】

Effectivity of Internal Validation Techniques for Gene Clustering

机译:内部验证技术对基因聚类的有效性

获取原文
获取原文并翻译 | 示例

摘要

Clustering is a major exploratory technique for gene expression data in post-genomic era. As essential tools within cluster analysis, cluster validation techniques have the potential to assess the quality of clustering results and performance of clustering algorithms, helpful to the interpretation of clustering results. In this work, the validation ability of Silhouette index, Dunn's index, Davies-Bouldin index and FOM in gene clustering was investigated with public gene expression datasets clustered by hierarchical single-linkage and average-linkage clustering, K-means and SOMs. It was made clear that Silhouette index and FOM can preferably validate the performance of clustering algorithms and the quality of clustering results, Dunn's index should not be used directly in gene clustering validation for its high susceptibility to outliers, while Davies-Bouldin index can afford better validation than Dunn's index, exception for its preference to hierarchical single-linkage clustering.
机译:聚类是后基因组时代基因表达数据的主要探索技术。作为聚类分析中必不可少的工具,聚类验证技术具有评估聚类结果的质量和聚类算法性能的潜力,有助于解释聚类结果。在这项工作中,我们使用由分层单链和平均链聚类,K均值和SOM聚类的公共基因表达数据集,研究了Silhouette指数,Dunn指数,Davies-Bouldin指数和FOM在基因聚类中的验证能力。很明显,Silhouette索引和FOM可以更好地验证聚类算法的性能和聚类结果的质量,由于Dunn索引对异常值的敏感性高,因此不应直接将其用于基因聚类验证,而Davies-Bouldin索引可以提供更好的离群值验证比Dunn的索引有效,因为它偏爱层次化的单链接群集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号