首页> 外文会议>Biological and artificial computation : From neurosciene to technology >Rotation Invariant IR Object Recognition Using Adaptive Kernel Subspace Projections with a Neural Network
【24h】

Rotation Invariant IR Object Recognition Using Adaptive Kernel Subspace Projections with a Neural Network

机译:基于神经网络的自适应核子空间投影的旋转不变红外物体识别

获取原文
获取原文并翻译 | 示例

摘要

This paper examines two techniques for rotation invariant, adaptive feature extraction and classification of infra red images using a feedforward neural network model. Both approaches use a set of adaptive kerndls, or wavelets, to generate rotation invariant features for classification and allow for direct minimisation of a classification error criterion against the input images whilst maintaining a low dimensional parameter space. Each feature extraction parameter is estimated using errors backpropagated from the classification stage. The first of the two methods uses complex kernels with adaptive radial polynomials. When combined with a magnitude nonlinearity in the first layer of the model they provide rotation invariant features for classification. However, there are several problems with this model which make it impractical. A second method provides a much simpler solution and uses the preprocessing technique of #theta# normalisation with a standard adaptive feature extraction and classification model. Both of these methods have been tested on the difficult problem of discriminating between objects derived from a set of real infra red images. Results and discussion are provided in this paper.
机译:本文研究了使用前馈神经网络模型进行旋转不变,自适应特征提取和红外图像分类的两种技术。两种方法都使用一组自适应kerndls或小波来生成旋转不变特征以进行分类,并允许针对输入图像的分类误差标准直接最小化,同时保持低维参数空间。使用从分类阶段反向传播的误差估计每个特征提取参数。两种方法中的第一种使用带有自适应径向多项式的复杂核。当与模型第一层中的幅度非线性相结合时,它们提供了旋转不变的特征以进行分类。但是,此模型存在一些问题,使其不切实际。第二种方法提供了更为简单的解决方案,并使用了#theta#规范化的预处理技术以及标准的自适应特征提取和分类模型。这两种方法都经过了区分来自一组实际红外图像的物体这一难题的测试。本文提供了结果和讨论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号