首页> 外文会议>Bioinformatics Research and Applications; Lecture Notes in Bioinformatics; 4463 >Invited Talk: Ab Initio Gene Finding Engines: What Is Under the Hood
【24h】

Invited Talk: Ab Initio Gene Finding Engines: What Is Under the Hood

机译:特邀演讲:Ab Initio基因发现引擎:幕后花絮

获取原文
获取原文并翻译 | 示例

摘要

I will revisit the statistical and computational foundations of ab initio gene finding algorithms that best fit current challenges in analysis of genomic data. With the number of new sequenced genomes rapidly growing, there is a need to generate high quality gene annotations in less time. In recent gene prediction competitions, the organizers described in great details the sets of experimentally confirmed eukaryotic genes that the contest participants were supposed to use for training statistical models, the key parts of ab initio gene finding algorithms. However, the gene prediction algorithm developed in our lab is only one of its kind that does not require a training set at all. It is using an unsupervised training approach and exhibits the same or better level of accuracy of gene identification as the algorithm trained on a sufficiently large training set. With more than 600 eukaryotic genome sequencing projects registered, as of February 2007, the self-learning gene finders become important tools able to accelerate extraction of biological information from newly sequenced eukaryotic genomes.
机译:我将重新审视从头开始寻找基因算法的统计和计算基础,这些算法最适合当前在基因组数据分析中的挑战。随着新测序基因组数量的快速增长,需要在更短的时间内生成高质量的基因注释。在最近的基因预测比赛中,组织者详细描述了实验参与者应用于训练统计模型的实验证实的真核基因集,这些模型是从头算基因的重要算法。但是,我们实验室开发的基因预测算法只是其中的一种,根本不需要训练集。它使用的是无监督训练方法,并且与在足够大的训练集上训练的算法相比,具有相同或更好的基因识别准确度。截止到2007年2月,已经注册了600多个真核基因组测序项目,自学基因发现者已成为能够加速从新测序的真核基因组中提取生物学信息的重要工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号