首页> 外文会议>Automatic Object Recognition >Comparative evaluation of neural-based versus conventional segmentors
【24h】

Comparative evaluation of neural-based versus conventional segmentors

机译:基于神经的分割器与传统分割器的比较评估

获取原文
获取原文并翻译 | 示例

摘要

Abstract: Boundary segmentation has long been a problem for automatic target recognizers. Its performance is crucial because it serves as the front end to the entire system. The authors examine and compare the characteristics and capabilities of four segmentors: the Boundary Contour System, the Meyer Line Finder, the Canny, and the Sobel Edge Detector. The first three models are 'smart' systems, that is, they have some 'higher level' processing capability, while the Sobel is a simple operator. In addition, the Boundary Contour System is neural based while the remaining three are conventional. The performance of each segmentor is evaluated with respect to the following image metrics: signal-to-noise, contrast, resolution, and the following boundary characteristics: spatial frequency, edge orientation. Both computer and terrain board modeled infrared imagery is used. Performance is quantified through both segmentation accuracy measures and visual fidelity.!
机译:摘要:边界分割一直是自动目标识别器的难题。它的性能至关重要,因为它是整个系统的前端。作者检查并比较了四个分割器的特征和功能:边界轮廓系统,Meyer寻线器,Canny和Sobel边缘检测器。前三个模型是“智能”系统,也就是说,它们具有一定的“更高级别”处理能力,而Sobel是简单的操作员。此外,边界轮廓系统是基于神经的,其余三个是常规的。参照以下图像指标评估每个分割器的性能:信噪比,对比度,分辨率和以下边界特征:空间频率,边缘方向。使用计算机和地形板建模的红外图像。通过分割精度度量和视觉保真度来量化性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号