首页> 外文会议>Automata, languages and programming >Node-Weighted Steiner Tree and Group Steiner Tree in Planar Graphs
【24h】

Node-Weighted Steiner Tree and Group Steiner Tree in Planar Graphs

机译:平面图中的节点加权Steiner树和Group Steiner树

获取原文
获取原文并翻译 | 示例

摘要

We improve the approximation ratios for two optimization problems in planar graphs. For node-weighted Steiner tree, a classical network-optimization problem, the best achievable approximation ratio in general graphs is Θ(logn), and nothing better was previously known for planar graphs. We give a constant-factor approximation for planar graphs. Our algorithm generalizes to allow as input any nontriv-ial minor-closed graph family, and also generalizes to address other optimization problems such as Steiner forest, prize-collecting Steiner tree, and network-formation games.rnThe second problem we address is group Steiner tree: given a graph with edge weights and a collection of groups (subsets of nodes), find a minimum-weight connected subgraph that includes at least one node from each group. The best approximation ratio known in general graphs is O(log~3n), or O(log~2n) when the host graph is a tree. We obtain an O(log n polyloglog n) approximation algorithm for the special case where the graph is planar embedded and each group is the set of nodes on a face. We obtain the same approximation ratio for the minimum-weight tour that must visit each group.
机译:我们提高了平面图中两个优化问题的逼近率。对于节点加权的Steiner树,这是一个经典的网络优化问题,在一般图中最佳可实现的近似比是Θ(logn),以前对于平面图没有更好的了解。我们给出平面图的常数因子近似值。我们的算法可以概括为允许输入任何非小数次闭合图族,还可以概括为解决其他优化问题,例如Steiner森林,奖品收集Steiner树和网络形成游戏.rn我们要解决的第二个问题是Steiner组树:给定具有边缘权重和一组组(节点的子集)的图,找到最小权重的连接子图,该子图包括每个组中的至少一个节点。一般图中已知的最佳近似比是O(log〜3n),或者当主图是树时是O(log〜2n)。对于图是平面嵌入的特殊情况,我们得到一个O(log n polyloglog n)近似算法,每个组都是一个面上的节点集。对于必须访问每个组的最小重量旅行,我们获得相同的近似比率。

著录项

  • 来源
  • 会议地点 Rhodes(GR);Rhodes(GR);Rhodes(GR);Rhodes(GR);Rhodes(GR);Rhodes(GR);Rhodes(GR);Rhodes(GR);Rhodes(GR);Rhodes(GR)
  • 作者单位

    MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar St., Cambridge, MA 02139, USA;

    ATT Labs - Research, 180 Park Ave., Florham Park, NJ 07932, USA;

    Department of Computer Science, Brown University, Providence, RI 02912, USA;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 程序设计、软件工程;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号