【24h】

Popular Mixed Matchings

机译:热门混合赛事

获取原文
获取原文并翻译 | 示例

摘要

We study the problem of matching applicants to jobs under one-sided preferences; that is, each applicant ranks a non-empty subset of jobs under an order of preference, possibly involving ties. A matching M is said to be more popular than T if the applicants that prefer M to T outnumber those that prefer T to M. A matching is said to be popular if there is no matching more popular than it. Equivalently, a matching M is popular if φ(M, T) ≥ φ(T, M) for all matchings T, where φ(X, Y) is the number of applicants that prefer X to Y.rnPreviously studied solution concepts based on the popularity criterion are either not guaranteed to exist for every instance (e.g., popular matchings) or are NP-hard to compute (e.g., least unpopular matchings). This paper addresses this issue by considering mixed matchings. A mixed matching is simply a probability distributions over matchings in the input graph. The function φ that compares two matchings generalizes in a natural manner to mixed matchings by taking expectation. A mixed matching P is popular if φ(P, Q) ≥ φ(Q, P) for all mixed matchings Q.rnWe show that popular mixed matchings always exist and we design polynomial time algorithms for finding them. Then we study their efficiency and give tight bounds on the price of anarchy and price of stability of the popular matching problem.
机译:我们研究在单方面偏好下使求职者匹配工作的问题;也就是说,每个申请人按优先顺序排列一个非空的工作子集,可能会涉及到联系。如果更喜欢M而不是T的申请人要多于那些更喜欢T而不是M的申请人,则认为匹配M比T更受欢迎。如果没有比M更受欢迎的匹配,则认为匹配很受欢迎。等效地,如果对所有匹配T都满足φ(M,T)≥φ(T,M),则匹配M很流行,其中φ(X,Y)是偏爱X而不是Y的申请人数量。rn不能保证对每个实例都存在流行度标准(例如,流行匹配),或者很难对NP进行计算(例如,最不受欢迎的匹配)。本文通过考虑混合匹配来解决此问题。混合匹配只是输入图中匹配的概率分布。比较两个匹配的函数φ通过期望自然地推广到混合匹配。如果对所有混合匹配Qφ(P,Q)≥φ(Q,P),则混合匹配P是流行的。我们证明了流行的混合匹配始终存在,并且我们设计了多项式时间算法来查找它们。然后,我们研究了它们的效率,并严格限制了无政府状态的价格和流行匹配问题的稳定性的价格。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号