首页> 外文会议>Atmospheric and Environmental Remote Sensing Data Processing and Utilization: an End-to-End System Perspective >Environmental satellite data utilization: Determination of wind vectors by tracking features on sequential moisture analyses derived from hyperspectral IR satellite soundings
【24h】

Environmental satellite data utilization: Determination of wind vectors by tracking features on sequential moisture analyses derived from hyperspectral IR satellite soundings

机译:环境卫星数据的利用:通过跟踪从高光谱红外卫星探测得到的连续水分分析中的特征来确定风向

获取原文
获取原文并翻译 | 示例

摘要

Traditional methods for deriving wind vectors from sequential geostationary satellite imagery involve the tracking of coherent clouds and moisture features in single channels (spectral bands). While this data source has proven to be important to global wind analyses, the approach is limited in two major ways: 1) The heights assigned to the vectors are not precise, leading to problems in data assimilation, and 2) Vertical profiles of the wind at a given geo-location are not provided, adding further stress to objective data assimilation (difficulty with single-level observations). A new approach to deriving winds from sequential satellite observations is being advanced at CIMSS. The method utilizes the same basic automated tracking code developed at CIMSS, however the input to the algorithm is in the form of constant-level moisture analyses derived from hyperspectral sounding information. Since the altitude of the features being tracked are already determined by the soundings/analyses, the height assignment ambiguities associated with the traditional approaches are ameliorated. Furthermore, the hyperspectral infrared (IR) information provides detailed vertical profiles of moisture where there are no clouds. This allows analyses of moisture at multiple vertical levels, which can then be used in an attempt to retrieve vertical profiles of wind. To date, the new scheme has been trialed on simulated data from GIFTS, and on one case of real data from airborne observations provided by the NAST-I instrument. From these first attempts, the "proof of concept" is successfully illustrated, and will be shown in the presentation.
机译:从连续的对地静止卫星图像中得出风向的传统方法涉及在单个通道(光谱带)中跟踪相干云和湿度特征。尽管已证明此数据源对于全局风分析很重要,但该方法受到两个主要方面的限制:1)分配给矢量的高度不精确,导致数据同化问题; 2)风的垂直剖面没有提供给定地理位置的数据,这给客观数据的同化处理增加了更多的压力(难以进行单层观测)。 CIMSS正在开发一种从连续的卫星观测中获取风的新方法。该方法使用在CIMSS开发的相同的基本自动跟踪代码,但是该算法的输入采用从高光谱探测信息得出的恒定水平的水分分析的形式。由于已经通过测深/分析确定了被跟踪特征的高度,因此改善了与传统方法相关的高度分配歧义。此外,高光谱红外(IR)信息可在没有云的情况下提供详细的垂直湿度剖面图。这样可以分析多个垂直水平的水分,然后将其用于尝试获取垂直的风廓线。迄今为止,该新方案已经在GIFTS的模拟数据以及NAST-I仪器提供的空中观测的一例真实数据上进行了试验。通过这些最初的尝试,成功地说明了“概念验证”,并将在演示文稿中显示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号