首页> 外文会议>Atmospheric and environmental remote sensing data processing and utilization IV: Readiness for GEOSS II >Evaluation of Satellite Land Surface Temperatures Using Ground Measurements from Surface Radiation Budget Network
【24h】

Evaluation of Satellite Land Surface Temperatures Using Ground Measurements from Surface Radiation Budget Network

机译:利用地面辐射收支网络的地面测量评估卫星陆地表面温度

获取原文
获取原文并翻译 | 示例

摘要

Evaluation of satellite land surface temperature (LST) is one of the most difficult tasks in LST retrieval algorithm development, because of spatial and temporal variability of land surface temperature and surface emissivity variations. A large number of high quality "match-up" satellite and ground LST data is needed for the evaluation process. In developing a LST algorithm for the GOES-R Advanced Baseline Imager, we produced a set of "match-up" dataset from SURFace RADiation (SURFRAD) budget network ground measurements and GOES-8 and -10 satellite measurements. The dataset covers one-year GOES Imager data over six SURFRAD sites in the United States. A stringent cloud filtering procedure was applied to minimize cloud contamination in the match-up dataset. Each of the SURFRAD sites contains enough match-up data pairs for ensuring significance of statistical analyses of the LST algorithm. The evaluation was performed by directly and indirectly comparing the SURFRAD and satellite LSTs of each site. The direct comparison was illustrated using scatter plots and histogram plots of the ground and the satellite LSTs, while the indirect comparison was performed using a matrix analysis model developed by Flynn (2006)[1]. We demonstrated that LST measurements from the SURFRAD instrument can be used in our evaluation of the GOES-R LST algorithm development and the precision of the GOES-R LST algorithm can be fairly well estimated.
机译:由于地表温度的时空变化和地表发射率变化,评估卫星地表温度(LST)是LST检索算法开发中最困难的任务之一。评估过程需要大量高质量的“匹配”卫星和地面LST数据。在为GOES-R高级基线成像仪开发LST算法时,我们从SURFace辐射(SURFRAD)预算网络地面测量以及GOES-8和-10卫星测量中生成了一组“匹配”数据集。该数据集涵盖了美国六个SURFRAD站点的一年期GOES Imager数据。应用了严格的云过滤程序以最大程度减少匹配数据集中的云污染。每个SURFRAD站点都包含足够的匹配数据对,以确保对LST算法进行统计分析的重要性。通过直接和间接比较每个站点的SURFRAD和卫星LST进行评估。使用地面和卫星LST的散点图和直方图图来说明直接比较,而使用Flynn(2006)[1]开发的矩阵分析模型来进行间接比较。我们证明了SURFRAD仪器的LST测量结果可用于我们对GOES-R LST算法开发的评估,并且可以很好地估算GOES-R LST算法的精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号