【24h】

GraphZip: A Fast and Automatic Compression Method for Spatial Data Clustering

机译:GraphZip:一种用于空间数据聚类的快速自动压缩方法

获取原文
获取原文并翻译 | 示例

摘要

Spatial data mining presents new challenges due to the large size and the high dimensionality of spatial data. A common approach to such challenges is to perform some form of compression on the initial databases and then process the compressed data. This paper presents a novel spatial data compression method, called GraphZip, to produce a compact representation of the original data set. GraphZip has two advantages: first, the spatial pattern of the original data set is preserved in the compressed data. Second, arbitrarily dimensional data can be processed efficiently and automatically. Applying GraphZip to huge databases can enhance both the effectiveness and the efficiency of spatial data clustering. On one hand, performing a clustering algorithm on the compressed data set requires less running time while the pattern can still be discovered. On the other hand, the complexity of clustering is dramatically reduced. A general hierarchical clustering method using GraphZip is proposed in this paper. The experimental studies on four benchmark spatial data sets produce very encouraging results.
机译:由于空间数据的大尺寸和高维度,空间数据挖掘提出了新的挑战。应对此类挑战的常用方法是对初始数据库执行某种形式的压缩,然后处理压缩的数据。本文提出了一种新颖的空间数据压缩方法,称为GraphZip,以产生原始数据集的紧凑表示形式。 GraphZip具有两个优点:首先,原始数据集的空间模式保留在压缩数据中。其次,任意维度的数据都可以高效,自动地处理。将GraphZip应用于大型数据库可以增强空间数据聚类的有效性和效率。一方面,对压缩数据集执行聚类算法所需的运行时间更少,而仍然可以发现该模式。另一方面,集群的复杂性大大降低了。提出了一种使用GraphZip的通用层次聚类方法。对四个基准空间数据集的实验研究产生了令人鼓舞的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号