首页> 外文会议>ASME/ISCIE international symposium on flexible automation 2012 >FABRICATION OF MICRO ORGANS USING A DIGITAL MICRO-MIRRORING MICROFABRICATION SYSTEM
【24h】

FABRICATION OF MICRO ORGANS USING A DIGITAL MICRO-MIRRORING MICROFABRICATION SYSTEM

机译:利用数字微粉化微细化系统制备微细有机物

获取原文
获取原文并翻译 | 示例

摘要

Micro-Electro-Mechanical Systems (MEMS) technologies have been very attractive and demonstrate the potential for many applications in the field of tissue engineering, regenerative medicine, and life sciences. These fields bring together the multidisciplinary field of engineering and integrated sciences to fabricate three-dimensional models that aides the exploration, generation or regeneration of organic tissues and organs. Presently, monolayer cell cultures are frequently used to investigate potential anti-cancer agents. The issues at hand are that these models give very little in terms of feedback on the effects of the microenvironment on chemotherapeutic and the heterogeneity of the tumor. Three-dimensional tumor and cancer models that mimic the actual disease are developed for in vitro investigations. These models create an environment that enables diseases to have an enhanced evaluation (compared to two dimensional) and eliminate the limitations of the traditional mainstays of cancer research. Three-dimensional Cancer models are economic, allow for biological characterizations. Cancer models are developed from investigations of the actual disease; computer tomography (CT) and magnetic resonance imaging (MRI) allow for biomodeling of the disease's environmental conditions. Unlike many traditional microfabrication techniques, the Digitial Micro-mirror Microfabrication (DMM) System eliminates the need for mask by incorporating a dynamic mask-less fabrication technique. The DMM is specifically designed for the developments of biologically inspired devices, whether it's a multicellular spheroid, hollow fiber, or multicellular layer (MCL) models; the DMM has the potential to utilize its dynamic micro mirrors to build the tissue model according to its desired design and characteristics. Each model is specifically designed to mimic the in vivo conditions of the tissue of interest.
机译:微机电系统(MEMS)技术非常吸引人,并展示了在组织工程,再生医学和生命科学领域中许多应用的潜力。这些领域汇集了工程学和综合科学的多学科领域,以构建三维模型,以辅助对有机组织和器官的探索,产生或再生。当前,单层细胞培养物经常用于研究潜在的抗癌剂。当前的问题是,这些模型在有关微环境对化学疗法和肿瘤异质性影响的反馈方面提供的很少。模仿实际疾病的三维肿瘤和癌症模型被开发用于体外研究。这些模型创建了一个环境,使疾病能够得到增强的评估(相比于二维),并消除了传统癌症研究主流的局限性。三维癌症模型是经济的,可以进行生物学表征。癌症模型是根据对实际疾病的调查得出的;计算机断层扫描(CT)和磁共振成像(MRI)可以对疾病的环境条件进行生物建模。与许多传统的微细加工技术不同,数字微镜微细加工(DMM)系统通过采用动态无掩模制造技术消除了对掩模的需求。 DMM是专门为开发受生物启发的设备而设计的,无论它是多细胞球体,中空纤维还是多细胞层(MCL)模型; DMM可以根据其所需的设计和特性,利用其动态微镜来建立组织模型。每个模型都经过专门设计,以模仿目标组织的体内状况。

著录项

  • 来源
  • 会议地点 St. Louis MO(US)
  • 作者单位

    Drexel University Drexel University Dept. of Mechanical Engineering and Mechanics Dept. of Mechanical Engineering and Mechanics Philadelphia, Pennsylvania. 19104, USA;

    Drexel University Drexel University Dept. of Mechanical Engineering and Mechanics Dept. of Mechanical Engineering and Mechanics Philadelphia, Pennsylvania. 19104, USA;

    Drexel University Drexel University Dept. of Mechanical Engineering and Mechanics Dept. of Mechanical Engineering and Mechanics Philadelphia, Pennsylvania. 19104, USA,Mechanical Engineering and Biomanufacturing Research Institute, Tsinghua University, Beijing, People's Republic of China;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号