首页> 外文会议>ASME(American Society of Mechanical Engineers) Turbo Expo vol.6 pt.A; 20070514-17; Montreal(CA) >REDUCTION OF TIP CLEARANCE LOSSES IN AN AXIAL TURBINE BY SHAPED DESIGN OF THE BLADE TIP REGION
【24h】

REDUCTION OF TIP CLEARANCE LOSSES IN AN AXIAL TURBINE BY SHAPED DESIGN OF THE BLADE TIP REGION

机译:通过叶片尖端区域的异型设计减少轴流涡轮机的尖端间隙损失

获取原文
获取原文并翻译 | 示例

摘要

Secondary flows and leakage flows lead to complex vortex structures in the flow field inside the passages of the vanes and blades in turbo machines. These result in aerodynamic losses and, thus, reduced efficiency. One of the major vortex structures is the tip clearance vortex, which is generated on the airfoil's suction side due to the leakage flow through the tip clearance, e.g. between rotating blades and casing. This leakage flow is induced by the pressure difference between pressure and suction side. The tip clearance vortex intensity strongly depends on the amount of tip clearance leakage. Thus, the reduction of this leakage mass flow increases the aerodynamic efficiency of a turbo-machine. In gas turbines, two ways are commonly used to influence the tip leakage flow: contouring of the radial gap either at blade tip or endwall, or changing the blade tip geometry by application of squealers or winglets on the blade tip. In this paper, a numerical investigation on the principle physics of a specific blade tip design is presented. On the pressure side the blades are extended in the tip region comparable to winglets ("hook-shaped"). With this change, the structures of the flow entering the gap between blade tip and casing are influenced to achieve a reduction of the mass flow in the radial gap. In this approach, the contour of the blade on the pressure side surface is shaped smoothly so that only a low increase of the local stresses should be expected and the blade is manufactured in one part. Furthermore, the height of the tip clearance is not affected. The new blade tip design is applied to 2nd and 3rd blade of the axial turbine in a test configuration of a KHI industrial gas turbine. Thus, a multi-stage numerical approach has been selected for the numerical investigation. The numerical model includes the flow path, vanes and blades of the 2nd and 3rd stage. The mixing plane technique is used to couple the blocks computed in stationary system of reference and rotating system of reference. The aerodynamic efficiency of the new designed blade tip in the two-stage arrangement is compared to the original design. It shows that a slight increase can be achieved in the static polytropic efficiency of the turbine configuration. The influence of the new design on the flow structures in the tip clearance region of the blades is analysed in detail to explain the mechanisms that cause the efficiency increase.
机译:二次流和泄漏流在涡轮机的叶片和叶片的通道内部的流场中导致复杂的涡流结构。这些导致空气动力学损失,并因此降低了效率。主要的涡旋结构之一是叶尖间隙涡流,它是由于通过叶尖间隙的泄漏流,例如在翼型的吸入侧而产生的。在旋转刀片和外壳之间。该泄漏流是由压力侧与吸入侧之间的压力差引起的。尖端间隙涡旋强度在很大程度上取决于尖端间隙泄漏量。因此,该泄漏质量流量的减少增加了涡轮机的空气动力学效率。在燃气轮机中,通常使用两种方式来影响叶尖泄漏流:在叶尖或端壁处径向间隙的轮廓,或者通过在叶尖上施加刮浆器或小翼来改变叶尖的几何形状。在本文中,对特定叶尖设计的原理物理进行了数值研究。在压力侧,叶片在翼尖区域中的延伸程度与小翼相当(“钩形”)。通过该改变,影响进入叶片尖端与壳体之间的间隙的流的结构,以实现径向间隙中的质量流的减小。在这种方法中,叶片在压力侧表面上的轮廓被平滑地成形,使得应当仅预期局部应力的较小增加,并且叶片被整体制造。此外,尖端间隙的高度不受影响。在KHI工业燃气轮机的测试配置中,新的叶尖设计应用于轴流式涡轮机的第二和第三叶片。因此,已经选择了多阶段数值方法进行数值研究。数值模型包括第二级和第三级的流路,叶片和叶片。混合平面技术用于耦合在固定参考系和旋转参考系中计算的块。将新设计的两段式叶尖的空气动力学效率与原始设计进行了比较。结果表明,涡轮机配置的静态多方效率可以略有提高。详细分析了新设计对叶片尖端间隙区域中流动结构的影响,以解释引起效率提高的机理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号