【24h】

COMPUTATIONAL FLUID DYNAMICS THROUGH AN UNSTRUCTURED LATTICE BOLTZMANN SCHEME

机译:通过非结构化格子Boltzmann格式进行计算流体动力学

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Computational fluid dynamics, in its conventional meaning, computes pertinent flow fields in terms of velocity, density, pressure and temperature by numerically solving the Navier-Stokes equations in time and space. At the turn of the 1980s, the Lattice Boltzmann Method (LBM) has been proposed as an alternative approach to solve fluid dynamics problems and due to the refinements and the extensions of the last years, it has been used to successfully compute a number of nontrivial fluid dynamics problems, from incompressible turbulence to multiphase flow and bubble flow simulations. The most severe limitation of the original method is the uniform Cartesian grid on which the LBM must be constructed, that requires the approximation of a curved solid boundary by a series of stair steps. This represents a particularly severe limitation for practical engineering purposes especially when there is a need for high resolutions near the body or the walls. Among the recent advances in lattice Boltzmann research that have lead to substantial enhancement of the capabilities of the method to handle complex geometries, a particularly remarkable option is represented by changing the solution procedure from the original "stream and collide" to a finite volume technique. This paper presents a compact and efficient finite-volume lattice Boltzmann formulation on unstructured grids based on a cell-vertex scheme recently proposed in literature to integrate the differential form of the lattice Boltzmann equation. It is shown that the method tolerates significant grid distortions without showing any appreciable numerical viscosity effects at second order in the mesh size, thus allowing a time-accurate description of transitional flows. Moreover, a new set of boundary conditions to handle flows with open boundaries is presented. The resulting model has been tested against typical flow problems at low and moderate Reynolds numbers.
机译:按照传统意义,计算流体动力学通过在时间和空间上对Navier-Stokes方程进行数值求解来计算速度,密度,压力和温度方面的相关流场。在1980年代初,已经提出了Lattice Boltzmann方法(LBM)作为解决流体动力学问题的替代方法,并且由于最近几年的改进和扩展,它已被用来成功地计算许多非平凡的方法。流体动力学问题,从不可压缩的湍流到多相流和气泡流模拟。原始方法的最严重限制是必须在其上构造LBM的统一笛卡尔网格,该网格需要通过一系列阶梯来逼近弯曲的实体边界。对于实际的工程目的,这是一个特别严重的限制,尤其是当需要在人体或墙壁附近具有高分辨率时。在格子Boltzmann研究的最新进展中,该方法已大大增强了处理复杂几何体的方法的能力,其中一个特别显着的选择是将求解过程从原始的“流和碰撞”更改为有限体积技术。本文基于最近在文献中提出的,融合格点Boltzmann方程的微分形式的,基于单元顶点格式的非结构化网格,提出了一种紧凑有效的有限体积格点Boltzmann公式。结果表明,该方法可以承受较大的网格变形,而不会在网格尺寸的第二级显示任何明显的数值粘度效应,从而可以对过渡流进行精确的时间描述。此外,提出了一组新的边界条件以处理具有开放边界的流。已经针对低和中雷诺数下的典型流动问题对所得模型进行了测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号