【24h】

HOW BACTERIA BIND MORE STRONGLY UNDER MECHANICAL FORCE: THE CATCH-BOND FIMH

机译:细菌如何在机械作用力下更牢固地结合:粘着力的FIMH

获取原文
获取原文并翻译 | 示例

摘要

We study a protein that responds to mechanical force in a most striking manner. We demonstrate that Escherichia coli bacteria need shear stress to bind to certain tissues and model surfaces; they bind strongest precisely when the body tries to wash them off. We have determined that the protein responsible for this behavior is FimH, a ubiquitous adhesion protein in intestinal bacteria that mediates adhesion to host cells via the carbohydrate mannose. Although mechanical force normally decreases bond lifetimes, we have shown that the bond between FimH and simple mono-mannose receptors is a "catch-bond" that lasts longer under shear stress. In contrast, structural variations in either FimH or the receptor cause a stronger mode of adhesion in static conditions with little or no activation under force. We derive a structural model for how mechanical force switches FimH to a strong binding mode by using steered molecular dynamics simulations, and validate the predictions with subsequent site-directed mutagenesis. The physiological consequences as well as the engineering principles suggested by the structural model will be discussed.
机译:我们研究了一种以最惊人的方式响应机械力的蛋白质。我们证明,大肠杆菌细菌需要剪切应力才能结合到某些组织和模型表面。当身体试图将它们洗掉时,它们的结合力最强。我们已经确定,负责此行为的蛋白质是FimH,这是肠道细菌中一种普遍存在的粘附蛋白,可通过碳水化合物甘露糖介导与宿主细胞的粘附。尽管机械力通常会缩短键的寿命,但我们已经证明FimH和简单的单甘露糖受体之间的键是在剪切应力作用下持续较长时间的“捕捉键”。相反,FimH或受体的结构变化会在静态条件下产生更强的粘附模式,而在力作用下几乎没有或没有激活。我们通过使用分子导向动力学模拟,推导了机械力如何将FimH切换为强结合模式的结构模型,并通过随后的定点诱变验证了预测结果。将讨论结构模型建议的生理后果以及工程原理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号