首页> 外文会议>Asilomar Conference on Signals, Systems, and Computers >A Self-Organizing Map-Based Adaptive Traffic Light Control System with Reinforcement Learning
【24h】

A Self-Organizing Map-Based Adaptive Traffic Light Control System with Reinforcement Learning

机译:具有增强学习功能的基于自组织地图的自适应交通信号灯控制系统

获取原文

摘要

Increasing urban congestion is a common problem in big cities all over the world. Some Adaptive traffic control (ATC) systems have been proposed to reduce the total travel delay time, which is the main factor of congestion cost. However, previous solutions need a great number of sensors and hardware devices, which are hard to deploy. Fortunately, the advent of advanced Internet of Things (IoT) has made possible more effective and efficient solutions for the congestion issue. Besides, with the availability of the Machine Learning (ML) models, there is hope that the ATC system can be improved with the IoT approach, adopting the ML models. In this paper, we propose a machine learning model for adaptive traffic light control system. First, we assume traffic data is collected from internet-connected IOT sensing devices in vehicles on the roads. Next, the proposed machine learning model receives the data analyzed in cloud, and generates an optimal traffic light period as output. Finally, the optimal traffic light period is transformed to traffic light setting signals to be delivered to the IoT actuating devices in the crossroads. For verifying the proposed model, we build a traffic simulator. For a 24-hour simulated period, the proposed model reduces 55.7% waiting time and 12.76% maximum road occupancy on average, as compared with the Fixed Traffic Light Control System (FTLCS). We also simulate different traffic levels, and our model performs consistently better than the FTLCS in the overall waiting time and maximum road occupancy. The experimental results show that the proposed model is able to alleviate the traffic congestion problem.
机译:在世界各地的大城市,城市拥堵加剧是一个普遍的问题。已经提出了一些自适应交通控制(ATC)系统来减少总旅行延迟时间,这是拥堵成本的主要因素。但是,先前的解决方案需要大量难以部署的传感器和硬件设备。幸运的是,先进的物联网(IoT)的出现为拥塞问题提供了更加有效的解决方案。此外,随着机器学习(ML)模型的可用性,希望采用ML模型的IoT方法可以改善ATC系统。在本文中,我们提出了一种用于自适应交通灯控制系统的机器学习模型。首先,我们假设交通数据是从道路车辆中联网的物联网传感设备中收集的。接下来,提出的机器学习模型接收在云中分析的数据,并生成最佳交通信号灯周期作为输出。最后,将最佳交通信号灯周期转换为交通信号灯设置信号,以传送至十字路口的IoT致动设备。为了验证提出的模型,我们构建了一个交通模拟器。与固定交通灯控制系统(FTLCS)相比,在24小时的模拟时间内,所提出的模型平均减少了55.7%的等待时间和12.76%的最大道路占用率。我们还模拟了不同的交通流量水平,并且我们的模型在整体等待时间和最大道路占用率方面的性能始终优于FTLCS。实验结果表明,该模型能够缓解交通拥堵问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号